Home > Press > Graphene nanotubes can increase the number of wind turbines to decrease CO2 emissions
Abstract:
Nanotechnology is able to unlock thousands of hectares of land previously restricted for wind farm construction, increasing the potential for green power generation globally. A recently developed graphene nanotube-modified polymer is a game-changing technology that solves a great challenge of the renewable energy industry – wind farm radar interference.
Wind power's share in worldwide electricity generation is increasing, helping to drastically decrease CO2 emissions. But along with undeniable advantages, wind energy has a serious problem. Wind turbines can cause interference to radar and other navigation systems, making it difficult for air-traffic controllers to track aircraft through the "clutter". This problem causes a large number of prohibitions on constructing wind farms in areas with intensive air traffic. In some countries, more than 60% of the entire territory is restricted for wind farms construction, blocking gigawatts of potential renewable energy capacity.
Developers from British company Trelleborg Applied Technology, which specializes in engineered material solutions, has found a way to solve this issue using graphene nanotubes (also known as single wall carbon nanotubes). “We realize that the problem is the large radar cross section of the turbine, so if we can reduce this, we remove the clutter and solve radar interference,” Dr Adam Nevin, Innovation Lead of Trelleborg Applied Technologies, explains. “In order to reduce it, we are using single wall carbon nanotubes and making nanocomposite which absorbs over 99% of the incident radar wave to make the coated object ’stealthy’, which makes it much easier to track aircraft and observe storms”.
Along with nanotubes' ability to efficiently absorb waves, they also allow new material to be extremely thin. The developers emphasize that this material would otherwise be many centimeters thick, but they managed to reduce it down to just millimeters, thus obtaining an ultra-lightweight nanopolymer. The new absorbing material uses graphene nanotubes, produced by OCSiAl.
As Dr Adam Nevin said, the product went through a full development cycle from initial research to a scaled-up solution within only 10 months only. The new absorbing material can be used in diverse product applications in telecommunications, automotive, electronic and antennae solutions, where strict regulations on electromagnetic interference and stray radio-frequency emissions apply.
####
For more information, please click here
Contacts:
Anastasia Zirka
PR & Advertising Manager
+7 913 989 9239
Copyright © OCSiAl Group
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||