Home > Press > Magnet research takes giant leap
UCF Professor Enrique del Barco is leading the team lexploring methods for creating machines that operate at trillions of cycles per second. CREDIT UCF |
Abstract:
Researchers pushing the limits of magnets as a means to create faster electronics published their proof of concept findings today, April 10, in the journal Science.
The University of Central Florida is the lead university in the multidisciplinary university research initiative (MURI) project, which is funded by a $7.5 million grant from the Department of Defense. The team exploring methods for creating machines that operate at trillions of cycles per second includes the University of California, Santa Cruz and Riverside, Ohio State University, Oakland University (Michigan) and New York University, among others.
Today's computers rely on ferromagnets (the same kind that stick to your refrigerator) to align the binary 1s and 0s that process and store information. Anti-ferromagnets are much more powerful, but their natural state, displaying no net measurable magnetization, makes it difficult to harness their power.
The laboratory of Enrique del Barco, Ph.D., and collaborators at the University of California, the National High Magnetic Field Laboratory, the Norwegian University of Science and Technology and the Chinese Northeastern University are successfully overcoming that natural resistance using electrical currents passed through anti-ferromagnets on the nanoscale. The results are groundbreaking because they represent proof of concept showing that antiferromagnetic devices can operate on the terahertz level -- or calculations completed in a trillionth of a second. Not only does that hold potential for everything from guidance systems to communications, but it brings devices closer to mimicking the way the brain operates.
"What we're seeing now is that operating at this level is possible and doable," del Barco said.
The next steps will require close collaboration between the theory, experiment and materials groups within the MURI. Creating devices on the nanoscale (with lateral dimensions below half a micron) takes a fundamental understanding of the appropriate materials. Both theoretical and experimental study will follow this proof of concept with the intention of finding creative ways to scale down anti-ferromagnets.
###
Del Barco received his PhD from the University of Barcelona (Spain) in 2001. He was a postdoctoral associate in the physics department at New York University before joining UCF in 2005.
####
For more information, please click here
Contacts:
Zenaida Gonzalez Kotala
407-446-6567
@UCF
Copyright © University of Central Florida
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Magnetism/Magnons
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||