Home > Press > Hair surface engineering to be advanced by nano vehicles: This new researched technology can help both drug delivery and hair cosmetics industry
Abstract:
"Hair surface engineering: modification of fibrous materials of biological origin using functional ceramic nano containers", a project headed by Rawil Fakhrullin, is supported by the Russian Science Foundation.
Dr. Fakhrullin explains, "We will modify the surface of hair and other fibrous materials of natural origin by the directed formation of nano-structured layers based on functional inorganic ceramic nano containers carrying a variety of organic components. Materials of natural origin are hypoallergenic, comfortable to use, but they have rather low wear resistance, and they are prone to deformation and biodegradation. Directed modification of properties using functionalized nano materials will significantly expand the field of application of natural fibers."
Based on the close similarity of the microstructure of fibrous materials of natural origin and mammalian hair, the scientists are going to create a universal technology for modifying the surface of fibers of biological origin for use in the textile and cosmetic industries.
«By modifying the fibrous structures of natural origin, it will be possible to change their aesthetic properties (color, texture and smell), protect them from biodegradation by applying antibacterial, fungicidal and insecticidal preparations, as well as increase the fire resistance of fabrics and non-woven materials based on wool, cotton, linen and silk,» elaborates Fakhrullin.
KFU bionanotechnologists will develop methods for modifying human hair. With their help, it will be possible not only to change the color of the hair, thickness, texture and aroma, but also to protect the structure of the hair and skin under them from ultraviolet radiation.
In addition, using these methods, the project head is convinced, it will be possible to create tools for applying topical anti-inflammatory drugs based on functional nano containers. When applied to human hair in affected areas of the skin, they will provide a prolonged gradual release of drugs. Veterinary preparations with a similar principle of action can be applied to the fur of farm and domestic animals for medicinal purposes.
In the process, scientists will also study the fundamental processes of self-assembly of inorganic nanoparticles on the surface of biological fibers and determine the optimal parameters for the directed modification of the properties of fibrous materials.
"Inorganic nano particles of various origin, biopolymers and their complexes will be used to study the patterns of self-assembly of nanoparticles on the surface of fibers," Fakhrullin concludes.
####
For more information, please click here
Contacts:
Yury Nurmeev
@KazanUni
Copyright © Kazan Federal University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||