Home > Press > Development of new photovoltaic commercialization technology: The cause for efficiency degradation in an actual operating environment has been identified, with proposal of material processing method for improving performance stability
Illustration of stable initial PCE under the actual operating environment of PV devices with the deployment of KI. CREDIT DGIST |
Abstract:
A technology to further accelerate the commercialization of Colloidal Quantum Dot(CQD) Photovoltaic(PV) devices, which are expected to be next-generation photovoltaic devices, has been developed.
On the 30th (Monday), DGIST announced that a research team of Professor Jongmin Choi from the Department of Energy Science & Engineering and Professor Edward H. Sargent from the University of Toronto has identified the cause of the performance degradation in CQD PV devices and developed a material processing method capable of stabilizing the performance of the devices.
Quantum dots have excellent light absorbance and are capable of absorbing light over a wide range of wavelengths. Hence, they have gained expectation as a key material for the next generation photovoltaic devices. In particular, quantum dots are light, flexible, and involve low processing costs; therefore, they can be replaced by supplementing the drawbacks of silicon solar cells currently in use
In this regard, several studies on photoelectric conversion efficiency (PCE) have been conducted with the aim of improving the performance of CQD PV devices. However, very few studies have focused on improving the stability of these devices, which is necessary for the commercialization process. In particular, few studies have used the CQD PV device at the Maximum Power Point, which is the actual operating environment of PV devices.
For this purpose, the research team investigated the causes of performance degradation by continuously exposing them to illumination and oxygen for long periods of time, similar to the actual operating conditions, in order to improve the stability required for the actual commercialization stage of CQD PV devices. As a result, it was identified that the iodine ions on the surface of the quantum dot solids were removed via oxidation, resulting in the formation of an oxide layer. This oxide layer resulted in the deformation of the quantum dot structure, thereby decreasing the efficiency of the device.
The research team developed a ligand substitution method with potassium(K) to improve the low efficiency of the device. Ligand refers to the ions or molecules that bond to the central atom of a complex similar to a branch. Here, potassium iodide, which prevents the oxidation of iodine, was deployed on the surface of quantum dot solids to undergo a substitution process. As a result of application of the invented method, the device maintained its continuous performance rate of over 80%, which is its initial efficiency rate, for 300 hours. This number is a figure that is higher than premeasured performance thus far.
Professor Jongmin Choi from DGIST said, "The study is to demonstrate that the CQD PV device can operate more stably in the actual operating environment," and further commented, "The results are expected to further accelerate the commercialization of the CQD PV device. "
The results of this study were published on February 20, in a world-leading, international academic journal Advanced Materials (IF = 25.809). Professor Jongmin Choi from the Energy Science & Engineering Department of DGIST participated in this study as the lead author.
####
For more information, please click here
Contacts:
Kwanghoon Choi
82-537-851-135
Copyright © DGIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||