Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Highly concentrated aqueous electrolytes could replace solvents used in batteries: The review article by researchers at the University of São Paulo shows the advantages of this technological alternative, which is nontoxic and much cheaper than other methods

Abstract:
Agência FAPESP – Highly concentrated aqueous electrolytes, known as water-in-salt electrolytes, could be an alternative to the organic solvents used in car batteries and other electrochemical devices. Abundance and, hence, low cost are key factors in this application, alongside nontoxicity, according to the review article “Water-in-salt electrolytes for high voltage aqueous electrochemical energy storage devices” published in the journal Current Opinion in Electrochemistry by Vitor Leite Martins and Roberto Manuel Torresi, both of whom are affiliated with the University of São Paulo’s Chemistry Institute (IQ-USP) in Brazil.

Highly concentrated aqueous electrolytes could replace solvents used in batteries: The review article by researchers at the University of São Paulo shows the advantages of this technological alternative, which is nontoxic and much cheaper than other methods

São Paulo, Brasil | Posted on April 25th, 2020

The study was conducted as part of Martins’ postdoctoral research supervised by Torresi and part of the Thematic Project “Optimization of the physicochemical properties of nanostructured materials for applications in molecular recognition, catalysis and energy conversion/storage,” for which Torresi is principal investigator. Both projects are supported by FAPESP.

“The term ‘water-in-salt electrolytes’ refers to solutions constituting a very high concentration of salt in a very small amount of water. The amount of water is just sufficient to dissolve the ions to promote solvation. The system contains no free water, unlike conventional solutions,” Torresi told Agência FAPESP.

This is possible only if the salt molecule to be dissolved comprises a large anion and a small cation, Torresi explained. An example is LiTFSI, i.e., lithium bis(trifluoromethane sulfonyl)imide (CF3SO2NLiSO2CF3), whereas NaCI, i.e., sodium chloride or table salt, is of no use, as it has an anion and cation of similar sizes.

“Because there’s no free water in this ultraconcentrated solution, electrolytic splitting of water into hydrogen and oxygen becomes far more difficult, so the electrochemical stability of the solution is very high despite the system containing water,” he said.

In summary, this innovative technological proposal based on a high concentration of salt in water offers significant advantages over conventional technology using salt dissolved in organic compounds. Nevertheless, the technological use of water-in-salt electrolytes also presents challenges.

“The first is that the solution contains little water and is highly hygroscopic: it tends to absorb moisture from the air, and this changes its water content. The second is that ultraconcentrated aqueous solutions are highly corrosive,” Torresi said.

The propensity to absorb ambient moisture is shared with organic solvents and is one of the reasons why conventional batteries have to be shielded, but corrosiveness is a major disadvantage: the organic solvents currently used in lithium batteries do not attack the electrodes, the only metallic components, to a significant extent.

However, according to Torresi, this drawback should not be overestimated. “Corrosion was a major issue for decades. Now, we know how to refine current collectors, and with a few adaptations, it won’t be hard to surmount the problem of corrosion in a future aqueous battery,” he said.

####

For more information, please click here

Contacts:
Heloisa Reinert

55-119-663-92552

@AgenciaFAPESP

Copyright © FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article “Water-in-salt electrolytes for high voltage aqueous electrochemical energy storage devices” can be retrieved from:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project