Home > Press > Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture.
http://dx.doi.org/10.1140/epje/i2020-11962-y|Reference F. Dekker, Á. González García, A.P. Philipse, R. Tuinier (2020), Phase stability of dispersions of hollow silica nanocubes mediated by non-adsorbing polymers, Eur. Phys. J. E 43:38. DOI 10.1140/epje/i2020-11962-y: |
Abstract:
Colloids are complex mixtures in which microscopic particles of one substance are suspended evenly throughout another. They can be prepared in many different ways, but to achieve desirable properties in the final mixture, researchers must maintain a delicate control over the interactions which take place between the particles. In new research published in EPJ E, a team led by Remco Tuinier at the Eindhoven University of Technology in the Netherlands demonstrate this level of control for a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes - a case which has only previously been explored through theoretical calculations.
Such varieties of functional colloid can be useful in a range of technologies, including materials which manipulate the paths of light travelling through them, as well as highly sensitive light sensors. Their intricate preparation requirements can be achieved by adding in polymers which don't stick to the microparticles, creating zones of lower density around them. When these zones overlap, the particles become attracted to each other in characteristic ways. This behaviour can be finely tuned through three different techniques: adding polymer molecules in different concentrations; varying the size difference between particles and polymer molecules; and changing the particle shapes.
For hollow silica nanocubes suspended in a solution containing molecules of polystyrene, Tuinier's team measured how the scattering of light passing through the mixture was affected by the polymer's concentration. Together with visual observations, this allowed them to assess the stability of the mixture. Altogether, they found that their experimental results agreed remarkably well with previous theoretical calculations. Their conclusions provide new insights into the diverse physics of colloidal mixtures, and could soon allow for new advances in technologies which sense and manipulate the flow of light.
####
For more information, please click here
Contacts:
Sabine Lehr
49-622-144-878-336
@SpringerNature
Copyright © Springer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||