Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biosynthetic sustainable hierarchical solar steam generator

Abstract:
Water is vital to the survival of life. However, water scarcity has become a major problem in modern society. Today, one-fifth of the world's population lives in water- deficient areas, especially in areas where there is no electricity. For people in such areas, access to clean drinking water is often a difficult task. Therefore, they urgently need an efficient, low-cost, sustainable, and easily accessible technologies and devices to generate clean water. Solar energy is one of the most abundant and widespread resources on earth. Solar-powered water purification technology is simple and efficient to obtain clean drinking water from non-drinkable water sources such as lake water, sewage or seawater.

Biosynthetic sustainable hierarchical solar steam generator

Hefei, China | Posted on July 10th, 2020

Nowadays, a team led by Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) report an efficient and sustainable biomimetic hierarchical solar steam generator (HSSG) based on bacterial cellulose (BC) nanocomposites. This HSSG is fabricated through a one-step aerosol-assisted biosynthesis process. The designed microbial synthesis process is successfully combined with the deposition of nanomaterials, and a sophisticated biomimetic hierarchical structure is constructed simply and efficiently. The hierarchical structure of this HSSG contains three continuous layers with different functions, including light absorbing layer of carbon nanotubes/BC, thermal insulation layer of glass bubbles /BC and wood substrate for supporting and water transporting. In HSSG, three-dimensional (3D) cellulose nanofiber network of BC hydrogel significantly reduced the energy consumption to convert the liquid water into vapor and accelerate the vaporization of water. Owing to the hierarchical structure design and reduced vaporization enthalpy of nanocomposites of HSSG, a high evaporation rate of 2.9 kg m-2 h-1 and solar-to-vapor efficiency of 80 % can be achieved.

In this HSSG, the hierarchical structure nanocomposites grow on the wood substrate and are tightly combined with the wood substrate through BC network of nanofibers. BC nanofibers crosslink with the cellulose of wood forming infiltrating layer in wood, which acts as a strong binder between wood and BC nanocomposite layers. This structure ensures the fast water transportation from wood to the BC nanocomposite layers and makes them firmly attached to wood substrate, which provides the structural foundation of thermal insulation and water transportation. Glass bubbles are microscale hollow glass spheres, which provides the structural foundation of thermal insulation and water transportation. On the top of the device, the carbon nanotubes and BC nanocomposite layer have sophisticated interlaced structure where carbon nanotubes and cellulose nanofibers form double-network of nanofibers. In this double-network, carbon nanotubes function as highly effective solar light absorber and BC nanofibers are used to transport water and reduce the energy consumption of evaporation. This multilayered structure of wood, glass bubbles /BC and carbon nanotubes/BC is designed to achieve fast water transportation, thermal management, effective light absorption and reduced vaporization energy consumption. Moreover, to systematically investigate the relation between evaporation rate, energy efficiency and energy consumption of evaporation, the team provides a novel two-dimension chart with guide lines showing different enthalpy of vaporization. This theoretical analysis method shows potential for analyzing the contributions of different functional parts in solar steam generator devices for evaporation rate.

Comparing with other technology of solar powered water purification, HSSG have great advantage on evaporation rate, energy efficiency, sustainability and cost, which make it a promising technology for future water purification.

####

For more information, please click here

Contacts:
Jane FAN Qiong

86-551-636-07280

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project