Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Solid-state intramolecular motions in continuous fibers for fluorescent humidity sensor

Schematic illustration of fluorescence variation of AIE/polymer fiber sensor when exposed to water molecules.

CREDIT
©Science China Press
Schematic illustration of fluorescence variation of AIE/polymer fiber sensor when exposed to water molecules. CREDIT ©Science China Press

Abstract:
Taking advantages of intramolecular motion of D-A based aggregation-induced emission (AIE) molecular rotors and one-dimensional (1D) polymer fibers, highly sensitive optical fiber sensors that respond to ambient humidity rapidly and reversibly with observable chromatic fluorescence change are developed. Moisture environments induce the swelling of the polymer fibers, activating intramolecular motions of AIE molecules to result in red-shifted fluorescence and linear response to ambient relative humidity (RH). In this case, polymer fiber provides a process-friendly architecture and a physically tunable medium for the embedded AIE molecules to manipulate their fluorescence response characteristics.

Solid-state intramolecular motions in continuous fibers for fluorescent humidity sensor

Beijing, China | Posted on July 16th, 2020

Intramolecular motions of AIE molecules driven by ambient humidity. D-A based AIE molecules contain three segments: an electron-donating tetraphenylethene (TPE) group, an electron-accepting pyridinium salt unit, and a spacer unit of single (TPE-P)/double (TPE-EP) bond. The highly twisted TPE group with four phenyl rings ensures the intramolecular twisted-motion in the solid state, while intramolecular rotation of D-A subgroups based on the twisted intramolecular charge-transfer (TICT) effect achieves local polarity sensing. Combining AIE and TICT effects that manipulated by the intramolecular motions, a sensitive humidity sensor is developed by embedding AIE molecules into a water-captured polymer.

Dry spinning AIE/polymer microfiber sensor. Dry-spinning technology is utilized to fabricate AIE/polymer microfibers, and polyvinylpyrrolidone (PVP) is chosen as a material support. AIE/PVP micro-fibrous film shows chromatic fluorescence response and linear response to ambient humidity, serving as sensitive woven fabrics for spatial-temporal humidity mapping. Assembly of microfibers and UV silicone tube could be integrated to develop fiber-shaped flexible device, which can act as a built-in sensor for easy identification of RH and also be able to serve as color-tunable lighting for smart displays.

Electro-spinning AIE/polymer nanofiber sensor. Polyacrylic acid (PAA) nanofibers from electro-spinning characterized with large surface area, high porosity, and fine flexibility, are used as a physical medium for AIE molecules to achieve instant humidity response sensitivity. The nanofibrous nonwoven membranes show ultrafast response and recovery (< 1 s) to a neglectable amount of water, which can be applied as axial positioning interface for future integrated wearable systems.

The mechanism of intramolecular motion of AIE molecules has been demonstrated for developing highly sensitive AIE/polymer fiber sensor. The fluorescence response performance is amplified by refining the fiber structure and changing the chemical structure of polymers. Additionally, fibrous sensors can be used to build various architectures, facilitating multifunctionality in terms of spatial humidity mapping, high device-integration capability, and touchless positioning. The strategy of combining AIE and 1D fiber structure will not only provide a new route for humidity sensor, but also serve as artificial nerves to sense wide environmental stimuli.

###

This research received funding from the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China, the Science and Technology Commission of Shanghai Municipality, the National Key Research and Development Program of China, the Program for Changjiang Scholars and Innovative Research Team in University, and International Joint Laboratory for Advanced Fiber and Low-Dimension Materials.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Yanhua Cheng

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project