Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Directly into the brain: A 3D multifunctional and flexible neural interface: Novel design of brain chip implant allows for measuring neuronal activity while simultaneously delivering drugs to the implant site

Being able to measure the electrical activity of the brain has helped us gain a much better understanding of the brain’s processes, functions, and diseases over the past decades. So far, much of this activity has been measured via electrodes placed on the scalp (through electroencephalography (EEG)); however, being able to acquire signals directly from inside the brain itself (through neural interfacing devices) during daily life activities could take neuroscience and neuromedicine to completely new levels. A major setback to this plan is that, unfortunately, implementing neural interfaces has proven to be remarkably challenging.
Being able to measure the electrical activity of the brain has helped us gain a much better understanding of the brain’s processes, functions, and diseases over the past decades. So far, much of this activity has been measured via electrodes placed on the scalp (through electroencephalography (EEG)); however, being able to acquire signals directly from inside the brain itself (through neural interfacing devices) during daily life activities could take neuroscience and neuromedicine to completely new levels. A major setback to this plan is that, unfortunately, implementing neural interfaces has proven to be remarkably challenging.

Abstract:
Being able to measure the electrical activity of the brain has helped us gain a much better understanding of the brain’s processes, functions, and diseases over the past decades. So far, much of this activity has been measured via electrodes placed on the scalp (through electroencephalography (EEG)); however, being able to acquire signals directly from inside the brain itself (through neural interfacing devices) during daily life activities could take neuroscience and neuromedicine to completely new levels. A major setback to this plan is that, unfortunately, implementing neural interfaces has proven to be remarkably challenging.

Directly into the brain: A 3D multifunctional and flexible neural interface: Novel design of brain chip implant allows for measuring neuronal activity while simultaneously delivering drugs to the implant site

Daegu, Republic of Korea | Posted on October 1st, 2021

The materials used in the minuscule electrodes that make contact with the neurons, as well as those of all connectors, should be flexible yet durable enough to withstand a relatively harsh environment in the body. Previous attempts at developing long-lasting brain interfaces have proven challenging because the natural biological responses of the body, such as inflammation, degrade the electrical performance of the electrodes over time. But what if we had some practical way to locally administer anti-inflammatory drugs where the electrodes make contact with the brain?

In a recent study published in Microsystems & Nanoengineering, a team of Korean researchers developed a novel multifunctional brain interface that can simultaneously register neuronal activity and deliver liquid drugs to the implantation site. Unlike existing rigid devices, their design has a flexible 3D structure in which an array of microneedles is used to gather multiple neural signals over an area, and thin metallic conductive lines carry these signals to an external circuit. One of the most remarkable aspects of this study is that, by strategically stacking and micromachining multiple polymer layers, the scientists managed to incorporate microfluidic channels on a plane parallel to the conductive lines. These channels are connected to a small reservoir (which contains the drugs to be administered) and can carry a steady flow of liquid toward the microneedles.

The team validated their approach through brain interface experiments on live rats, followed by an analysis of the drug concentration in the tissue around the needles. The overall results are very promising, as Prof. Sohee Kim from Daegu Gyeongbuk Institute of Science and Technology (DGIST), Korea, who led the study, remarks: “The flexibility and functionalities of our device will help make it more compatible with biological tissues and decrease adverse effects, all of which contribute to increasing the lifespan of the neural interface.”

The development of durable multifunctional brain interfaces has implications across multiple disciplines. “Our device may be suitable for brain–machine interfaces, which enable paralyzed people to move robotic arms or legs using their thoughts, and for treating neurological diseases using electrical and/or chemical stimulation over years,” explains Dr. Yoo Na Kang of the Korea Institute of Machinery & Materials (KIMM), first author of the study. Let us hope many people benefit from a direct and durable connection to the brain!

####

About DGIST (Daegu Gyeongbuk Institute of Science and Technology)
Daegu Gyeongbuk Institute of Science and Technology (DGIST) is a well-known and respected research institute located in Daegu, Republic of Korea. Established in 2004 by the Korean Government, the main aim of DGIST is to promote national science and technology, as well as to boost the local economy.

With a vision of “Changing the world through convergence", DGIST has undertaken a wide range of research in various fields of science and technology. DGIST has embraced a multidisciplinary approach to research and undertaken intensive studies in some of today's most vital fields. DGIST also has state-of-the-art-infrastructure to enable cutting-edge research in materials science, robotics, cognitive sciences, and communication engineering.

Website: https://www.dgist.ac.kr/en/html/sub01/010204.html



About the authors

Prof. Sohee Kim, currently with DGIST, is developing various soft bioelectronic devices based on flexible materials to interface our central and peripheral nervous system with assistive or rehabilitative systems, such as robotic hands.

Dr. Yoo Na Kang was the first student that Dr. Sohee Kim supervised after she moved to DGIST. Kang is now working at Korea Institute of Machinery and Materials alongside a team seeking to develop medical assistive robots.

For more information, please click here

Contacts:
Kwanghoon CHOI
DGIST (Daegu Gyeongbuk Institute of Science and Technology)

Office: 82-537-851-133 x1133

Copyright © DGIST (Daegu Gyeongbuk Institute of Science and Technology)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project