Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds

An artist's representation of some of the new structures Rajapakha and the team have designed.

CREDIT
Brookhaven National Laboratory/Angewandte Chemie
An artist's representation of some of the new structures Rajapakha and the team have designed. CREDIT Brookhaven National Laboratory/Angewandte Chemie

Abstract:
Putting a suite of new materials synthesis and characterization methods to the test, a team of scientists from the University of Iowa and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has developed 14 organic-inorganic hybrid materials, seven of which are entirely new. These uranium-based materials, as well as the detailed report of their bonding mechanisms, will help advance clean energy solutions, including safe nuclear energy. The work, currently published online, was recognized as both a Very Important Paper and a Hot Topic: Crystal Engineering in Angewandte Chemie, International Edition. It will appear in July’s print issue.

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds

Upton, NY | Posted on July 21st, 2023

While it’s important to understand what a structure is made from, it is just as important to understand what holds it together. Scientists and students from the University of Iowa, with the help of Sara E. Mason, a group leader in theory and computation at the Center for Functional Nanomaterials, a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory, and adjunct associate professor at the University of Iowa, embarked on a quest to understand and manipulate the bonds that support the structure of uranyl tetrahalide, a uranium compound.

“This study was beyond collaborative,” said study co-author Sara E. Mason. “On the synthesis side, we discovered entirely new crystal structures, which is really cool on its own. On top of that, we saw some interesting thermochemistry, the chemical energy stored in the bonds of those structures. Then there was the modeling of these structures. We could have kind of ended our study there, but Harindu Rajapaksha, the student driving this research, really wanted to push it further and use the thermochemistry and the modeling to understand these systems at a level that hasn't been possible before.”

The layers of work the team contributed resulted in a comprehensive quest to understand and manipulate the bonds that support the structure of uranyl tetrahalide, an important uranium compound. The theoretical and experimental research provided insight into the way hydrogen molecules form bonds that can stabilize these complex molecular structures, paving the way for scientists to alter them for many applications.

Uranyl Tetrahalide—the Remix
When designing hybrid materials to study, why look at uranium? For this team, the answer is both practical and personal.

“In order to effectively manage nuclear waste, we need a better understanding of issues like material separations and recycling,” said Tori Forbes, a professor and director of the Materials Analysis, Testing, and Fabrication Facility at the University of Iowa. “We need to know how uranium behaves in solids and in water, so we are probing the most basic chemistry of uranium to acquire knowledge that can be used for advanced technologies and strategies to improve the back end of the nuclear fuel cycle.”

Looking towards a future with clean energy deployed at scale, uranium is a material that has piqued a lot of scientific interest. Uranium makes up a vast majority of the byproducts from nuclear energy, which is a zero-carbon-emission energy source. Understanding the chemistry of uranium and related systems is integral for implementing nuclear energy safely and effectively. That isn’t the only intriguing aspect of this element though. Some researchers enjoy the challenge of working on such complex structures.

“I'm a chemist by training,” said Mason, “so I’m fascinated by what’s really deep in the periodic table, like uranium. The deeper you go, the more electrons you have, and the more electrons you have, the weirder, more exotic, and more exciting the electronic structure and bonding is. There's this ‘final frontier’ of the periodic table aspect to it. These are never-before-characterized structures. These are brand new! From a pure, chemical curiosity, this is all really cool.”

This work also built on the foundation of uranyl hybrid materials research that the team published in Inorganic Chemistry in 2022. Both studies used density-functional theory, a computational modelling method that uses quantum mechanics to predict materials’ electronic structure—the way electrons move in certain materials—alongside complementary methods to characterize these structures. In larger molecules, the atomic structure of a chemical system gets more complex, and more electrons are available to interact. Those interactions can make certain calculations difficult, which is why scientists rely on a few different methods to investigate the structure and properties of these systems. By building on the foundations of their previous work, the team now had enough structures to compare the theoretical work to the experiment, which limited them in the past.

Making Connections
LEGO® bricks will snap together and form a strong bond until they are pried apart. Their precisely molded plastic studs and recesses were designed to always work in the same way with all kinds of structures, opening a world of possibilities with each configuration. Molecules have a number of systems to bond atoms together. Some are melded to each other like glue, some click together like LEGO® bricks.

Non-covalent hydrogen bonds can be thought of like an electrostatic force. There is a bond donor, like the studs on the top of a LEGO® brick, that interacts with a bond acceptor, or the back of the brick where the studs fit snugly. These bonds can occur both intra- and intermolecularly, as well as between separate molecules or within the same molecule structure, which allows for all kinds of interesting molecular geometries to arise. The strength of these bonds and the energy held within the bonds change based on the structures they’re in. Understanding the properties of these variations can allow scientists to get creative and discover how to take apart and rebuild useful materials in unexpected ways.

Forbes found that these bonds were more interesting than they appeared on the surface. She explained that “non-covalent interactions (NCIs) like this are often the bonds that get overlooked because they are considered weak. However, when you combine them into a larger network, then it is the sum of these interactions that can have huge impacts on the chemistry. This is more a systems-level approach to understand the chemistry holistically. These types of network systems are incredibly important to the stability of materials and the overall behavior of uranium in water.”

“NCIs are significant in several applications, including drug development and to nuclear waste reprocessing,” explained Rajapaksha. “Our goal was to create a methodology for quantitatively characterizing the NCI network in a well-studied uranyl tetrahalide model system and describe how NCIs affect two crucial uranyl solid phase properties: vibrational and formation enthalpies?a direct indicator of a species' stability. These properties are significant because vibrational spectroscopy, a method of identifying molecules by the way they absorb light, is a frequently utilized technique for specialized methods that can identify uranyl species.”

Enthalpy is the measurement of the internal energy and pressure energy of a thermodynamic system, which determines the strength of the bonds. When broken, the energy stored in these bonds is released as heat, which can be measured through a process called calorimetry. In this process, a tool called a calorimeter measures the change in temperature that occurs when that heat is transferred out. If that word looks familiar, it’s because calorimetry determines how many calories are in food. Instead of burning materials, however, the team used acid to create a chemical reaction that broke the bonds and gave off heat. Getting the computational modeling to agree with the experimental data, however, took a bit of work.

“Rajapaksha got that to work out really nicely,” said Mason. “He had this high-quality agreement between the model thermochemistry and the measured thermochemistry. This is important because it means that we can rely on his measurements. Even if it's a system that hasn't been synthesized yet, he can model it correctly. He can trust those predictions. If we have a reliable way of calculating the thermochemistry, then we can spot trends and gain a new, more complete physical understanding of the bond, chemically speaking, which can allow us to tune and control these interactions.”

The Shape of Things to Come
While the team has learned some interesting things about uranyl tetrahalide systems, they say the most important finding is the cooperative methodology they have developed to characterize these materials. There are other complex chemical structures that the same principles can be applied to, and their applications could have world changing impacts.

“We are really thrilled about our findings,” said Rajapaksha, “and we intend to expand this work in the future to include less-explored systems, such as neptunyl. Neptunium 237, a pollutant, is a long-lived isotope that contributes to the radioactivity of spent nuclear fuels. Basic knowledge in this field would be extremely valuable to basic sciences and nuclear waste management. We have, so far, obtained pretty intriguing results by applying our methodology to the neptunyl system, which we aim to publish soon.”

This research is funded by the Department of Energy, Basic Energy Sciences program under DE-SC0021420 and the Theory and Computation facility of the Center for Functional Nanomaterials (CFN), which is a U.S. Department of Energy Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Computational resources (High Performance Computing access) were provided in part by the University of Iowa. All calorimetry measurements were performed at the University of Notre Dame. Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science.

####

About DOE/Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Follow @BrookhavenLab on Instagram, LinkedIn, Twitter, and Facebook.

For more information, please click here

Contacts:
Denise Yazak
DOE/Brookhaven National Laboratory

Office: (631)344-6371

Copyright © DOE/Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Possible Futures

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Materials/Metamaterials/Magnetoresistance

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Announcements

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project