Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum pumping in molecular junctions

The study focuses on the quantum pump effect in a benzenedithiol molecule connected to two copper electrodes and coupled with cavity photons. 

Credit
Senior Lecturer Riku Tuovinen
The study focuses on the quantum pump effect in a benzenedithiol molecule connected to two copper electrodes and coupled with cavity photons. Credit Senior Lecturer Riku Tuovinen

Abstract:
Researchers have developed a new theoretical modelling technique that could potentially be used in the development of switches or amplifiers in molecular electronics. The modelling technique is a collaboration between researchers at the University of Jyväskylä, Finland, and Wroclaw University of Science and Technology, Poland.

Quantum pumping in molecular junctions

Jyväskylän yliopist, Finland | Posted on August 16th, 2024

Molecular electronics is the study of how electrons move in junctions formed by individual molecules and how this can be used in electronic devices. The time scales of the theoretical models typically used in these processes are very fast compared to those observed experimentally and aligning them has been a challenge.

Using a new modelling technique developed by researchers at the University of Jyväskylä and Wroclaw University of Science and Technology, a setup was investigated in which a benzenedithiol molecule is coupled to copper electrodes and interacts with light in a cavity. The new theoretical method provides an experimentally relevant time scale for the study of molecular junctions.

“Our theoretical results show that the molecular system we studied can produce significant light emission and high harmonic generation,” says Senior Lecturer Riku Tuovinen from the University of Jyväskylä.

Interestingly, the way these effects occur is more akin to what has been observed in solid state materials rather than in atomic or molecular systems.

“The study also found that symmetries in the configuration can either suppress or enhance certain light frequencies,” says Tuovinen, “so the configuration could potentially be used as a switch or amplifier in molecular electronics.”

The molecular quantum pump

The researchers refer to the studied setting as a kind of molecular quantum pump.

“Similar to how the efficiency of the famous Archimedes' screw depends on the tilting angle and the spiral step, the efficiency of molecular quantum pumps depends on the magnitude and phase difference of the driving voltages,” explains Tuovinen.

The study has been published in Nano Letters on 10 July 2024.

####

For more information, please click here

Contacts:
Media Contact

Elina Leskinen
University of Jyväskylä - Jyväskylän yliopisto

Office: 50 461 7880
Expert Contact

Riku Tuovinen
University of Jyvaskyla

Cell: +358505730519

Copyright © University of Jyväskylä - Jyväskylän yliopisto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article Title

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project