Home > Press > Nanotech: Moving Closer to a Manufacturing Revolution
Abstract:
Molecular Manufacturing: What, Why and How
Nanotechnology's long-expected transformation of manufacturing has just moved closer to reality. A new analysis of existing technological capabilities, including proposed steps from today's nanotech to advanced molecular machine systems, was released today by the Center for Responsible Nanotechnology.
The study, "Molecular Manufacturing: What, Why and How," performed by Chris Phoenix, CRN Director of Research, is available online at Wise-Nano.org. It shows how existing technologies can be coordinated toward a reachable goal of general-purpose molecular manufacturing.
"Molecular manufacturing offers a fundamentally new approach to build things 'from the bottom up'," said Phoenix. "The idea is to use nanoscale machines to create structures with atomic precision. Ultimately, that can result in the ability to make complex products, both small and large, with unprecedented performance and value."
Theories and concepts for molecular manufacturing, first proposed in the 1980's by nanotechnology pioneer K. Eric Drexler, have improved steadily since then. But recent progress is occurring at a faster pace. Less than two years ago, Phoenix published the first detailed architecture for a "nanofactory," a remarkably powerful general-purpose manufacturing appliance that could sit on a desktop. Since then, Drexler, working with John Burch, has developed an improved design that should be significantly more efficient.
Recent developments in DNA synthesis and polymer construction, plus advances in miniaturization and precision of scanning probe microscopes, are rapidly adding pieces to the nanotech jigsaw puzzle.
This new study puts the pieces in place. Presenting research performed by CRN under a grant from NASA's Institute for Advanced Concepts, while also updating and combining existing work in related fields, it describes a newly simplified way to develop molecular manufacturing starting with today's technology.
Phoenix describes two approaches for building the initial basic tools with current technology. Other sections outline incremental improvement from those early tools toward the first integrated nanofactory, and analyze a scalable architecture for a more advanced nanofactory. Product performance and likely applications are discussed, as well as incentives for corporate or government investment in the technology. Finally, considerations and recommendations for a targeted development program are presented.
"We've done an end-to-end analysis of molecular manufacturing's goals as well as some ways to get there," said Phoenix. "More important, this study shows that development of the technology will be both highly desirable and relatively straightforward. It's probably not as far away as many people think, which means it's time to begin discussing the ramifications, both positive and negative."
"Molecular Manufacturing: What, Why and How" does not directly address the societal, environmental, medical, economic, military, security, and geopolitical implications of the technology's introduction. However, those topics are explored in other papers and articles on CRN’s website.
This release is posted online, here.
The full study is available, here.
Other resources:
About The Center for Responsible Nanotechnology:
The Center for Responsible Nanotechnology is headquartered in New York. CRN is a non-profit think tank concerned with the major societal and environmental implications of advanced nanotechnology. We promote public awareness and education, and the crafting and implementation of effective policy to maximize benefits and reduce dangers. CRN is an affiliate of World Care, an international, non-profit, 501(c)(3) organization.
For more information visit CRNano.org
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||