Home > News > World's Smallest Fiber-Optic Electric Field Probe
February 21st, 2006
World's Smallest Fiber-Optic Electric Field Probe
Abstract:
NEC Corporation today announced the successful development of the world's smallest fiber-optic electric field probe, enabled through the adoption of a nanotechnology process. The newly developed probe consists of an optical fiber and an electro-optical film that is formed at its edge, which acts as a field sensor. As its lateral size of approximately 125 micrometer is equivalent to that of the diameter of an optical fiber, the probe can be inserted into narrow spaces such as the crevice between a ball grid array (BGA) LSI package and a printed circuit board (200 - 300 micrometer), enabling evaluation of the electrical characteristics of high-density packaged electronic circuits on printed circuit boards (PCBs). It can therefore be utilized to create electrical designs for high-density electronic packages toward the realization of low-noise/low-electromagnetic interference (EMI) level circuits.
Source:
japancorp.net
Related News Press |
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||