Home > News > GE Looks at Nano to Power Next-Gen Solar In Historic R&D Labs of Thomas Edison
September 22nd, 2007
GE Looks at Nano to Power Next-Gen Solar In Historic R&D Labs of Thomas Edison
Abstract:
At General Electric, nanotechnology is seen as "the ultimate materials science," and holds a special power to change the fundamental landscape of the energy industry.
Today, GE's nano-researchers probe the promises of nanosciences in the successor facility to the historic R&D lab where GE's founder Thomas Edison unlocked the powers of electricity a century earlier and pioneers such as Langmuir and Blodgett established the field of surface science. Among GE's early discoveries are nano-ceramic materials to make lighter and higher-powered aircraft engines, nanofibers to build more effective windblades for wind power, and nanotechnologies to drive more economical and high-efficiency solar panels.
Nano World News speaks with GE's Loucas Tsakalakos, a project leader in GE's Nanotechnology Program and a member of the program's original team, to learn more about how GE sees nanoscience unlocking the power of the sun.
Source:
nsti.org
Related News Press |
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||