Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Futuristic Electronics and Better Diplomacy Among the Focuses of Pitt-Involved Research for U.S. Defense Department

Abstract:
Pitt will receive nearly $2.7 million as part of collaborative research with universities around the country

Futuristic Electronics and Better Diplomacy Among the Focuses of Pitt-Involved Research for U.S. Defense Department

PITTSBURGH, PA | Posted on March 31st, 2008

High-density electronics of the future and more effective diplomacy are among the possible outcomes of a combined $2.7 million that two University of Pittsburgh researchers will receive as part of collaborative projects for the U.S. Department of Defense. The Multidisciplinary University Research Initiative (MURI) program-which supports basic research of interest to the Defense Department-will devote $200 million over the next five years to 34 multi-institutional projects, three of which involve Pitt.

Pitt professor Jeremy Levy in the Department of Astronomy and Physics in the School of Arts and Sciences was awarded $1.1 million as part of a five-year, $6.5 million project to investigate future applications of electron spin, which may allow for faster and less power-consuming information technology. Michael Lewis, a professor in the School of Information Sciences, will receive a total of nearly $1.5 million for two MURI projects totaling $13.75 million: One will evaluate the feasibility of a decentralized military communication system; another is meant to help military negotiators better cooperate with people of different cultures.

Levy will collaborate with researchers from four other universities to apply electron spin to organic semiconductors and other materials in an attempt to create devices that can store and transfer information with more density but by using less power. Electron spin-the interaction between spinning electrons and magnetic materials-is used in today's computer hard drives and allows highly sensitive sensors to probe the drive's minute magnetic domains. As a result, hard drives are smaller and maintain higher information density.

Levy and his colleagues want to extend these spin-based electronic effects in new ways and with new materials, providing the scientific basis for future technologies. Levy will use state-of-the-art optical and scanning probe techniques to investigate the properties of materials fabricated by his colleagues at the University of Iowa, the University of California at Berkeley, and New York University. Theoretical support will come from researchers at Iowa and the University of Missouri at Columbia.

Levy also will investigate further uses for a technique he developed and published in "Nature Materials" in March. He discovered how to switch, at will, the interface of two readily formed insulating materials from an electrical conductor to an insulator and back at nanoscale dimensions. Levy and his team created wires less than 4 nanometers wide at the interface of two insulators. These conducting nanostructures can subsequently be erased, rendering the interface an insulator once more. This adjustability holds promise for more powerful and compact information technologies, including ultra-high density information storage, reconfigurable logic devices, single-electron devices, and quantum computers.

Lewis will receive almost $600,000 from MURI to create methods for observing how cultural differences influence negotiation. Lewis specializes in human interaction with and through computers and machines, including virtual environments, human error, negotiation, and e-commerce. His work for MURI is part of a $6.25 million project to understand the dynamics of cooperation and negotiation-and the factors that lead to success or disaster. He will work with researchers from Carnegie Mellon University, the University of Michigan, Georgetown University, and the University of Southern California.

Because geographic and language barriers render cultural differences particularly difficult to observe, Lewis and his team at Pitt will develop a browser-based negotiation environment to offset distance and language. For example, language differences would be overcome by having subjects compose offers and arguments using lists and menus in their native tongue. Also, Webcams, microphones, and translators can help make interaction more personal. Once the negotiations are recorded, Lewis will provide them to the partner institutions to identify aspects of negotiation that are universal and unique to a particular culture and those that become significant in cross-cultural interaction. The project results will be used for training military negotiators.

Lewis also will receive nearly $1 million as part of a $7.5 million project involving researchers from Carnegie Mellon, Massachusetts Institute of Technology, Cornell University, and George Mason University to study the benefits and pitfalls of a decentralized military information network.

Their work will involve a developing military communication system that bucks the traditional hierarchy and instead shifts information processing and decision making to a peer-to-peer network outside the chain of command. This could allow soldiers and robots to better communicate and react in fast-changing situations on the ground. On the other hand, the lack of a central command to filter information could lead to confusion among soldiers. Lewis will evaluate the strengths and weaknesses of the proposed network as it relates to how teams of soldiers are able interact with the communication system itself.

The competitive MURI program received 104 proposals in 18 topics. The selected projects include 64 universities, which will receive a total of $19.7 million in fiscal year 2008. Panels of experts in the respective fields selected the projects based on scientific merit. For more information on the MURI awards, visit the Defense Department's Web site at www.defenselink.mil/releases/release.aspx?releaseid=11765.

####

About University of Pittsburgh
Founded in 1787 as a small, private school, the Pittsburgh Academy was located in a log cabin near Pittsburgh’s three rivers. In the 220 years since, the University has evolved into an internationally recognized center of learning and research.

For more information, please click here

Contacts:
Morgan Kelly
412-624-4356 (office)
412-897-1400 (cell)

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project