Home > Press > Carbon Nanotube Measurements: Latest in NIST ‘How-To’ Series
Scanning electron microscope image of 'cleaned' carbon nanotubes at NIST (color added for clarity.)
Credit: NIST |
Abstract:
The National Institute of Standards and Technology (NIST), in collaboration with the National Aeronautics and Space Administration (NASA), has published detailed guidelines* for making essential measurements on samples of single-walled carbon nanotubes (SWCNTs). The new guide constitutes the current "best practices" for characterizing one of the most promising and heavily studied of the new generation of nanoscale materials.
The nanotubes are essentially cylinders of carbon atoms with a wall only one atom thick and a diameter of a couple of nanometers—but lengths up to several million times their diameter. (Think of a soup can about 100 kilometers tall.) Because of their unique electronic, thermal, optical and mechanical properties they are being studied for a wide—and expanding—range of applications, including ultrastrong fibers for nanocomposite materials, circuit elements in molecular electronics, hydrogen storage components for fuel cells and light sources for compact, efficient flat-panel displays. One basic problem is assuring the quality and purity of SWCNT materials. All known techniques for producing these tiny tubes also produce large quantities of nanojunk: simple graphite and carbon soot often encapsulating small metal particles used to catalyze the nanotube synthesis process. (See, for example, "NIST Laser-Based Method Cleans Up Grubby Nanotubes", Tech Beat Dec. 1, 2006.)
Accurate, reliable and preferably rapid measurement techniques are needed to optimize production processes to create more product and less impurities. These will help to control cleaning and purifying processes and ultimately to improve the confidence of buyers and sellers of SWCNT materials. Beginning in 2003, NIST and NASA researchers started addressing the problem by sponsoring a series of workshops devoted to nanotube measurements. The NIST "Recommended Practice Guide" on Measurement Issues in Single Wall Carbon Nanotubes grew out of second workshop in 2005, and represents what industry, government and academic researchers regard as the most useful and accurate measurement techniques for characterizing the purity of SWCNT samples. The techniques discussed include thermogravimetric analysis; near-infrared spectroscopy; Raman spectroscopy and optical, electron and scanned probe microscopy. Researchers from the NASA Johnson Space Center, the University of California at Riverside, Boston University and the NASA Langley Research Center contributed to the guide.
The techniques described in the guide were proposed as the basis for international standards for nanotube characterization. A collaborative effort that includes the US, China, Japan, and Korea is now underway under the International Organization for Standardization (ISO) to develop these techniques into standards that will help ensure uniform characterization metrics used when buying and selling nanotubes. The editors caution that in the fast-moving field of carbon nanotubes, characterization methods will need to be updated periodically.
The NIST Recommend Practice Guides are a set of publications devoted to specific, challenging measurement issues faced in industry and research. Online copies of Measurement Issues in Single Wall Carbon Nanotubes and other guides in the series are available at The "How To Measure" Book Series.
* S. Freiman, S. Hooker, K. Migler and S. Arepalli (eds.). Measurement Issues in Single Wall Carbon Nanotubes. NIST Special Publication 960-19, March 2008.
####
About NIST
The National Institute of Standards and Technology (NIST) is a non-regulatory agency of the U.S. Department of Commerce. NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.
For more information, please click here
Contacts:
Michael Baum
(301) 975-2763
Copyright © NIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||