Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > KLA-Tencor Launches First Computational Lithography Tool To Address Double-Patterning Challenges

Abstract:
Today KLA-Tencor (NASDAQ:KLAC) introduced the latest version of its industry-leading computational lithography tool, PROLITH™ 11. The new tool enables users for the first time to evaluate current double-patterning schemes and cost-effectively explore alternate solutions to lithography challenges in design, materials and process development. This new computational lithography tool also supports single-pass patterning and immersion technologies.

KLA-Tencor Launches First Computational Lithography Tool To Address Double-Patterning Challenges

San Jose, CA | Posted on July 10th, 2008

"The emergence of double-patterning lithography has challenged circuit designers and chipmakers because of the dramatic increase in lithography complexity and experimental costs," noted Ed Charrier, vice president and general manager of KLA-Tencor's Process Control Information Division. "Computational lithography has become an essential tool for controlling these costs. Among computational lithography tools, PROLITH 11 has the unique ability to allow engineers to explore wide ranges of design, material or process conditions in order to solve a particular problem — without having to spend the resources of a fab."

Double-patterning lithography (DPL) is a method for constructing the small features of advanced devices by dividing the pattern into two interleaved patterns. This means that a double mask set and new photoresist materials are required for DPL layers, amplifying process complexity and cost. With experts predicting the price of a mask set to exceed $4M at the 32nm node, fabs are strongly motivated to thoroughly characterize how a two-pass, double-mask, dual-resist strategy will print on the wafer under the natural range of process conditions, so that the mask designs, materials and process parameters are right the first time.

PROLITH 11 allows engineers to model this complex system with unprecedented precision, and then use the model to optimize the system by exploring the effects of small or large changes in mask design, photoresist properties, and scanner or process parameters on the printed pattern. By using PROLITH 11, fabs avoid time-consuming, expensive experiments on product wafers which delay time to market and result in thousands of scrapped processed wafers.

As one tool in a complete suite of systems from KLA-Tencor designed to address advanced lithography challenges, PROLITH 11 has been shipped to leading chipmakers in the U.S., Japan and Taiwan. The PROLITH platform comprises the most widely used lithography simulation toolset on the market, installed in the development groups of virtually every chipmaker currently producing 65nm and 45nm devices.

PROLITH 11 TECHNOLOGY SUMMARY


Fundamental and Rigorous Calculations





PROLITH 11 is the only lithography simulator to model the topography specific to double patterning and calculate how variability in printing the first layer could affect the second layer.



PROLITH 11 results are based on fundamental optical and kinetic models.



PROLITH can accommodate:


• Complex film stacks


• Embedded substrate topography



PROLITH 11 resist models can be calibrated using data from IC manufactures, resist vendors, research groups and consortia.


Extrapolation of Results for Problem Solving





The PROLITH 11 model can be used to explore:


• New mask designs


• New photoresists


• Different scanner settings


• Different process parameters

Complementary to Full-Chip Simulators

Complementary to full-chip simulators, which are designed to optimize an entire chip in less than 24 hours, PROLITH models a small area of the die in full detail in a few minutes. While the results of full-chip simulators apply to one set of design and process conditions, PROLITH results can be extrapolated significantly from the conditions under which the model was generated, so that various solutions can be explored. PROLITH results can be used to determine the optimum conditions under which full-chip simulators are run.

####

About KLA-Tencor
KLA-Tencor is the world’s leading provider of process control and yield management solutions for the semiconductor and related microelectronics industries. Headquartered in San Jose, California, the Company has sales and service offices around the world. An S&P 500 company, KLA-Tencor is traded on the NASDAQ Global Select Market under the symbol KLAC.

For more information, please click here

Contacts:
KLA-Tencor
Ed Lockwood
408-875-9529 (Investor Relations)
Sr. Director, Investor Relations

Meggan Powers
408-875-8733 (Media Relations)
Sr. Director, Corporate Communications

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project