Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Research Demonstrates Potential of T2 Biosystem’s Novel Portable, Rapid Nanoscale MR-based Diagnostic Technology

Abstract:
Findings Published in Nature Medicine

New Research Demonstrates Potential of T2 Biosystem’s Novel Portable, Rapid Nanoscale MR-based Diagnostic Technology

Cambridge, MA | Posted on July 15th, 2008

T2 Biosystems, Inc., a company developing the first portable medical diagnostic products which combine nanotechnology and miniaturized magnetic resonance (MR) technology, today announced significant research findings that demonstrate the superior efficacy of the Company's nanoparticle-based, magnetic resonance diagnostic technology in a new miniaturized prototype. The findings appear in Nature Medicine in an article entitled "Chip-NMR biosensor for detection and molecular analysis of cells."

The findings published in Nature Medicine show the clinical potential and exquisite sensitivity of T2's technology as a robust and portable diagnostic device for multiplexed, quantitative and rapid analysis within a miniaturized prototype. In the study, a prototype device developed by the investigators at the Massachusetts General Hospital and Harvard University performed measurements on biological samples, accurately detecting bacteria with high sensitivity, identifying small numbers of cells and analyzing them on a molecular level in real time, while measuring a series of protein biomarkers in parallel. The results showed the prototype distinguished between simulated blood samples representing healthy individuals, those with cancer, and those with diabetes, by looking for eight different biomarker molecules and also demonstrated it is sensitive enough to detect just 10 bacteria in a given sample.

This new research demonstrates the clinical potential of T2's technology, through new methods of advancing and developing magnetic resonance-based diagnostics, which will ultimately offer improved speed, accuracy and efficiency as well as portability to a broader range of settings including doctor's offices, homes and hospitals.

"This exciting data shows that this T2 technology-based prototype is currently two to three orders of magnitude more sensitive than the standard NMR scanners used in many laboratories today, and the revolutionary potential this technology can bring to bear on the field of clinical diagnostics," said Ralph Weissleder, Ph.D., author of the paper, co-founder of T2 Biosystems and Professor, Harvard Medical School. "This novel technology will ultimately enable immediate, accurate diagnostic testing for nearly any health condition, in nearly any setting."

"This exciting data is a continued validation of the breakthrough potential of T2's novel technology," said John McDonough, CEO of T2 Biosystems. "This data further demonstrates the robust capabilities of our portable diagnostics platform and the potential to improve health care by providing accurate and rapid diagnostic results in virtually any healthcare setting."

T2 Biosystems is developing the next generation of medical diagnostic products through its proprietary technology, which combines nanotechnology and the miniaturization of proven MR technology to develop rapid, accurate and portable diagnostics. T2 Biosystems' technology has been validated in multiple published journal articles and has shown to accurately analyze viruses, bacteria, proteins, hormones, DNA, small molecules and other diagnostic targets. The Company is developing a pipeline of diagnostic products based on its technology, including devices for hospitals, diagnostic laboratories and medical offices, as well as individual patients.

####

About T2 Biosystems, Inc.
T2 Biosystems is a private biotechnology company developing next-generation medical diagnostic products using its proprietary technology, combining nanotechnology and miniaturized magnetic resonance (MR) technology to provide rapid, accurate and portable diagnostics. T2 Biosystems was founded in 2006 by renowned researchers from the Massachusetts Institute of Technology, Harvard University, Harvard Medical School and Massachusetts General Hospital, and has assembled a world-class team, board of directors and scientific advisory board that collectively have a proven track record of translating technologic innovations into breakthrough products, building significant corporate value. T2 Biosystems is located in Cambridge, Massachusetts.

For more information, please click here

Contacts:
Yates Public Relations
Kathryn Morris
845-635-9828

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project