Home > Press > Zetasizer Nano helps establish size independence in DNA driven nanoparticle structuring
Abstract:
A research team led by Dr Oleg Gang at the Brookhaven Center for Functional Nanomaterials (CFN) in New York is using the Zetasizer Nano particle characterization system from Malvern Instruments in ground-breaking work that has demonstrated successful DNA-guided formation of ordered 3-D crystalline structures. DNA's natural ability to self-assemble according to pre-programmed genetic codes within its pairing bases makes it the perfect architectural device for construction of novel crystalline structures. The ability to engineer such 3-D structures enables the production of functional materials that take advantage of the unique properties that may exist at the nanoscale - for example, enhanced magnetism, improved catalytic activity, or new optical properties.
Dr. Gang and his team have succeeded in building open, DNA stabilized 3D ordered structures and clusters from nanoparticles. This structure will be also able to incorporate additional small molecules, proteins or polymers within a 3D matrix. They achieved this by tuning the balance, between the attractive force provided by complementary outer-shell DNA regions with the repulsive force of non-complementary DNA or inner-shell DNA spacers. The resulting interactions lead to various morphologies of assemblies, including particle organization with crystalline order and regulated clustering, containing from millions to single particles per cluster.
DNA-guided self-assembly of nanoparticles is predominantly controlled by the surface fraction of DNA on each particle, irrespective of particle size. The Dynamic Light Scattering (DLS) kinetic profiles and aggregate size distribution data provided by the Zetasizer Nano, together with information from other techniques, were used in sample analysis. The results demonstrate that any particle size increase resulting from increased average surface coverage of DNA strands is balanced by a loss in entropic interDNA interaction due to an increase in the particle's surface curvature.
Malcolm Connah, Product Manager Nanometrics at Malvern Instruments, is delighted that the Zetasizer Nano is being used in such inspirational research. "The work of Dr Gang and his team lays the foundation for numerous and diverse advances in nanotechnology," he said. "This is an exciting prospect and Malvern is very pleased that the Zetasizer Nano is making such a valuable contribution."
####
About Malvern Instruments Ltd
Malvern Instruments provides a range of complementary materials characterization tools that deliver inter-related measurements reflecting the complexities of particulates and disperse systems, nanomaterials and macromolecules. Analytical instruments from Malvern are used in the characterization of a wide variety of materials, from industrial bulk powders to the latest nanomaterials and delicate macromolecules. A broad portfolio of innovative technologies is combined with intelligent, user-friendly software. These systems deliver industrially relevant data enabling our customers to make the connection between micro (such as particle size) and macro (bulk) material properties (rheology) and chemical composition (chemical imaging).
Particle size distribution, particle shape information, zeta potential, molecular weight, chemical composition, and bulk materials properties can all be determined with instruments from the Malvern range. The company’s laboratory, at-line, on-line and in-line solutions are proven in sectors as diverse as cement production and pharmaceutical drug discovery.
Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Korea and Japan, a joint venture in India, a global distributor network and applications laboratories around the world.
For more information, please click here
Contacts:
Trish Appleton
Kapler Communications
Knowledge Centre
Wyboston Lakes
Great North Road,
Wyboston
Bedfordshire
MK44 3BY
UK
T: +44 (0)1480 479280;
F: +44 (0)1480 470343
USA contact:
Marisa Fraser
Malvern Instruments Inc
117 Flanders Road
Westborough
MA 01581-1042
USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403
Please send sales enquiries to:
Alison Vines
Malvern Instruments Ltd
Enigma Business Park
Grovewood Road
Malvern
Worcestershire
WR14 1XZ
UK
Tel: +44 (0) 1684 892456;
Fax: +44 (0) 1684 892789
Copyright © Malvern Instruments Ltd
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||