Home > Press > Scaling down to diamond quantum electronics
Dr Pakes, right, and honours student Andrew Ford in the La Trobe Physics laboratory. |
Abstract:
Over the past three decades researchers have been competing to reduce the size of basic electronic devices. Intel has been leading the commercial effort with its recent announcement of the 'Atom' processor which incorporates transistors on the scale of tens of nanometres.
One nanometre is equal to a millionth of a metre so Intel's silicon chip is certainly winning on economies of scale.
La Trobe physicist Chris Pakes is aiming to scale the technology down further into the realm of quantum physics. He and co-researchers are talking about one-dimensional nano-wires and individual atoms performing the tasks of transistors, not using silicon, but diamond.
Dr Pakes and Professor John Riley lead an international team that has received one million dollars in research funding to investigate the semi-conductor properties of diamond as a new material for nano-chips.
Diamonds are now being made artificially. They come as single crystals, numbered and packaged in grids for the laboratory.
At La Trobe the stones end up in a scanning tunnelling microscope where they get plenty of loving attention as physicists fiddle with molecules called fullerenes, finding ways of pushing them into patterns on the diamond surface to form tiny electronic components.
A chain of fullerenes will induce in the diamond a wire one nanometre wide, operating at the quantum level. Here, a new set of functions comes into play. Particles will begin to behave like waves, electrons will travel in a more orderly fashion - one at a time - and the mathematical equations that normally govern electronics will no longer apply.
'If you take a standard piece of wire and increase its width, the wire's conductivity will increase over a continuous range of values,' Dr Pakes says. 'In quantum electronics if you take a nano-wire and change its width continuously you get a discrete set of properties. Resistance, for example, will relate to the 'quantised' energy levels of an electron when it is confined in the nano-wire.'
This is fundamental physics; experimental nanotechnology being built from the ground up, circuitry being laid one molecule at a time.
'There may be applications twenty to thirty years down the track in a quantum device or computer,' the physicist says. 'If this research works, and can be scaled up, computer power will be orders of magnitude greater.'
Diamond has several advantages over silicon, he says. Some quantum effects for example can be demonstrated at room temperature, giving them greater commercial potential.
'I believe it's by looking at fundamental science that real progress will be made in nano-industries. Diamonds are hard to work with, but if we can control them at the atomic scale we can potentially control them at any scale.
'In terms of research much of the exciting work has happened in the last five years. They are a relatively new material.'
The research funding includes $718,000 from an ARC Discovery Grant and an ARC Linkage Infrastructure, Equipment and Facilities Grant, which went towards buying a low-temperature scanning tunnelling microscope.
Collaborators include scientists from the University of Nottingham (UK), Kavli Institute of Nanoscience (Netherlands) and the Univeristaet Erlangen (Germany).
####
For more information, please click here
Contacts:
Mark Pearce
Tel: +61 3 9479 5246
Fax: +61 3 9479 1387
Email: m.pearce
@latrobe.edu.au
Ernest Raetz
Tel: +61 3 9479 2315
Fax: +61 3 9479 1387
Email: e.raetz @latrobe.edu.au
Copyright © La Trobe University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||