Home > Press > Studying the force: Turner earns CAREER award for research on micro-devices
Kevin T. Turner |
Abstract:
Imagine reading this article on an electronic screen that could be rolled up and put into a pocket. Someday, the electronics to power this kind of screen may be produced by a process that relies on a very simple tool: a stamp.
Reliable flexible displays are only one of a variety of new microelectronic and micromechanical devices that may become possible thanks to fundamental research by Mechanical Engineering Assistant Professor Kevin Turner. Turner is studying the underlying physics and mechanics of adhesion during a process called microtransfer printing. He will use his research to improve microtransfer printing manufacturing processes, which eventually could be used to produce a host of innovative technologies, such as advanced optoelectronic devices, high efficiency solar cells, and new types of microelectromechanical systems.
His work has garnered a prestigious National Science Foundation CAREER award, which recognizes faculty members at the beginning of their academic careers who have developed creative projects that effectively integrate advanced research and education. Turner's award comes with a five-year $430,000 grant.
Microtransfer printing is essentially a process that "prints" with solid materials rather than ink. A silicone stamp is designed with a smooth side that is used to pick up micro- or nanostructures from the substrate on which they are originally fabricated. The stamp is used to transfer these structures — which may be fully processed integrated circuits or building blocks for more complex devices — and places them down on another substrate or functional device.
Traditional silicon-based microelectronic devices are constructed on thick wafers, which produce rigid devices. To create a flexible device, such as a flexible display or processor, very thin layers of single crystal silicon can be peeled from a thick substrate and placed on to a compliant substrate. Even though silicon is a stiff, brittle material, it can be made extremely flexible by making it less than 1-micron thick.
However, a key challenge is that there are few techniques available to move large-area thin layers, which are floppy and fragile. Microtransfer printing has emerged as a potential option for thin layer transfer since it can be done quickly and used to create a large number of devices.
Microtransfer printing relies on surface adhesion that occurs thanks to a force known as the van der Waals force. At room temperature, the smooth surface of the silicone stamp bonds directly to micro- or nanostructures via these forces, allowing the structures to be picked up. In nature, van der Waals forces allow gecko lizards to adhere their feet to surfaces in order to scale walls and scamper across ceilings.
Turner will use a combination of modeling and experiments to investigate the fundamental behavior of van der Waals-based adhesion in microtransfer printing processes. Based on this fundamental study, he will explore using surface texture and geometric structures on the surfaces of the silicone stamps to control adhesion. He also will identify optimal stamp designs for the pick up and release of micro- and nanostructures, will research new types of composite stamps based on materials other than silicone, and will examine how different loading techniques can be used to further control adhesion.
"If we measure the forces that govern microtransfer processes and develop computational models that capture the fundamental interfacial behavior, then we can examine higher level manufacturing questions," Turner says. "We then can use that knowledge to design more effective manufacturing processes and techniques."
In addition to his research, Turner will develop advanced graduate courses in adhesion and contact mechanics, as well as an undergraduate elective in the design and manufacturing of nano- and microsystems. He also will host local K-12 teachers in his lab during the summer and will work with the teachers to develop lesson plans about nanotechnology for elementary and high school students.
####
About University of Wisconsin-Madison
In achievement and prestige, the University of Wisconsin–Madison has long been recognized as one of America's great universities. A public, land-grant institution, UW–Madison offers a complete spectrum of liberal arts studies, professional programs and student activities. Spanning 933 acres along the southern shore of Lake Mendota, the campus is located in the city of Madison.
For more information, please click here
Copyright © University of Wisconsin-Madison
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Light guide plate based on perovskite nanocomposites November 3rd, 2023
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
3D & 4D printing/Additive-manufacturing
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
MEMS
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||