Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > What is a qbit?

April 6th, 2010

What is a qbit?

Abstract:
By Roy Johnson

Quantum computing is based on different mathematics and different hardware from conventional, binary computing.

Quantum computers already exist, in one form or another, and they work with qbits, not the usual 1/0 bits. A qbit is, mathematically, a state vector in a two-level quantum system or a vector that applies to complex numbers. Putting it simply and practically, a qbit can have the value 1,0 or both. In quantum language the simultaneous 1/0 value is called a superposition.

It seems impossible to use something that doesn't have a rigidly fixed and measureable value. It conjures up scary memories of the Heisenberg Uncertainty Principle and the Schrodinger's Cat problem.

In fact, we do know the maths that enable us to work with qbits - it's basically a matter of probabilities. If you think of the traditional 1/0 values as a sphere, 1 being the north pole and 0 being the south pole, the possible states of a qbit - determined by probability amplitude - will fall on the surface of that sphere.

Quantum states also have the unique property of entanglement. This is a non-local property of quantum states (qbits, for example) whereby two sets will have higher correlation than is possible in classical mathematics. Simply and somewhat inaccurately expressed, this allows quantum machines to work quickly on problems that a conventional machine can solve - but only with impossible time scales.

Source:
mybroadband.co.za

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Quantum Computing

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project