Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How Things Work: Atomic force microscopy

Electron microscopy allows us to see the cantilever of an atomic force microscope. This cantilever applies force to a surface, producing an accurate image of the surface. Courtesy of Wikimedia Commons.
Electron microscopy allows us to see the cantilever of an atomic force microscope. This cantilever applies force to a surface, producing an accurate image of the surface. Courtesy of Wikimedia Commons.

Abstract:
Atomic force microscopy (AFM), a popular tool for imaging, measuring, and manipulating matter at the nanoscale, was invented in 1986 and was commercialized in 1989. This type of microscopy gathers information by feeling the surface with mechanical probes. AFM is a type of scanning probe microscopy (SPM) in which the image of a surface is obtained by moving a probe over a sample and recording the interactions between the probe and the surface of the sample.

By Kush Mangal

How Things Work: Atomic force microscopy

Pittsburgh, PA | Posted on April 26th, 2010

AFM is used for a variety of biological applications, including imaging molecules, cells, tissues, and biomaterials. At Carnegie Mellon, AFM is being used to study peptides and lipoproteins. AFM, popularly used in nanotechnology research, has been used to image the surface of the ivy plant to understand how it climbs structures, as stated in an article on www.photonics.com.

According to www.veeco.com, AFM is on the cutting edge of science since it provides true three-dimensional surface images. AFM is used to image and manipulate atoms and structures on many different surfaces. Samples viewed by AFM do not need any special treatments. The technology provides higher resolution images than other methods such as the scanning electron microscope. It is also favorable since it has the ability to operate in liquids and work with sample sizes ranging from a few nanometers up to several micrometers.

An AFM consists of several important components: a scanner (which is mounted above the tip or below the sample), a detector, and feedback controls. A cantilever moves over the surface of a sample in a scan. The cantilever is usually composed of silicon or silicon nitride, and has a sharp tip on one side that interacts with surface of a sample. The type of tip used depends on the sample it will interact with. The scanner is made from a tube of piezoelectric elements, which are materials that change shape when a certain amount of voltage is applied to them. According to the optical level method for the detector, a laser beam is shot at the tip of the cantilever and is reflected onto a position-sensitive photo-detector.

According to the book Atomic Force Microscopy: Biomedical Methods and Applications, AFM can operate in several modes: force-distance, contact, and tapping mode. In the force-distance mode, the tip will start above the surface and is brought down. When the tip is close to the surface, it sticks to it and then retracts back to the starting point. In the contact mode, the tip contacts the surface, and the tip will deflect up and down based on the sample's topography. The force feedback from the tip ensures that there is contact with the surface. Contact mode provides information about physical properties such as elasticity, adhesion, hardness, and friction. In tapping mode, the cantilever is oscillated and brought into contact with the surface. The contact with the sample is intermittent over a very short time. The changing amplitude of the oscillation provides information about the surface. Tapping mode is a better choice with soft samples since it is less damaging, while contact mode is most useful for hard surfaces.

The tip used in AFM is one of the important factors influencing the resolution obtained. The sharper the tip used, the greater the resolution. The tip can be affected by different parameters to alter the image. These are compression, interaction forces, and irregular curvatures. Compression affects studies with DNA, irregular curvatures cause broadening in the image, and interaction forces cause an increase in image contrast.

AFM is a great tool for visualization on the atomic scale. The images it provides of both conductive and nonconductive materials are valuable to researchers. AFM allows for a different way to visualize molecules in three dimensions.

####

About Carnegie Mellon University
Carnegie Mellon University is a global research university with more than 11,000 students, 75,000 active alumni, and 4,000 faculty and staff. Recognized for its world-class arts and technology programs, collaboration across disciplines and innovative leadership in education, Carnegie Mellon is consistently a top-ranked university.

For more information, please click here

Copyright © Carnegie Mellon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project