Home > Press > Nanodots Breakthrough May Lead To ‘A Library On One Chip’
Abstract:
A researcher at North Carolina State University has developed a computer chip that can store an unprecedented amount of data - enough to hold an entire library's worth of information on a single chip.
By Matt Shipman
The new chip stems from a breakthrough in the use of nanodots, or nanoscale magnets, and represents a significant advance in computer-memory technology.
"We have created magnetic nanodots that store one bit of information on each nanodot, allowing us to store over one billion pages of information in a chip that is one square inch," says Dr. Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and author of the research.
The breakthrough is that these nanodots are made of single, defect-free crystals, creating magnetic sensors that are integrated directly into a silicon electronic chip. These nanodots, which can be made uniformly as small as six nanometers in diameter, are all precisely oriented in the same way - allowing programmers to reliably read and write data to the chips.
The chips themselves can be manufactured cost-effectively, but the next step is to develop magnetic packaging that will enable users to take advantage of the chips - using something, such as laser technology, that can effectively interact with the nanodots.
The research, which was funded by the National Science Foundation, was presented as an invited talk April 7 at the 2011 Materials Research Society Spring Meeting in San Francisco.
NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.
Note to editors: The study abstract follows.
"Self Assembly of epitaxial magnetic nanostructures"
Author: J. Narayan, North Carolina State University
Presented: April 7, 2010, 2011 MRS Spring Meeting, San Francisco
Abstract: This talk focuses on self-assembly processing of magnetic nanodots such as Ni, Ni-Pt, Fe-Pt during thin film growth by pulsed laser deposition. This self-assembly can be extended from two-dimensional to three-dimensional structures by controlling stresses/strains in the layers of composite structures. Magnetic properties are found to be a strong function of size, shape, orientation and chemical ordering. The primary focus of this talk is on epitaxial orientation of nanodots and integration of microelectronic/nanoelectronic devices on Si(100)(1). The epitaxial orientation is controlled by TiN buffer layer grown epitaxially on Si(100), and results compared with randomly oriented nanodots formed using amorphous alumina buffer. The epitaxial structures (Ni, Ni-Pt, Fe-Pt)/TiN/Si(100) involve lattice misfit ranging from 8% to 22%, which can be handled by our domain epitaxy paradigm (2). The DME paradigm involves matching of integral multiples of lattice planes across the interface, as the strain relaxation occurs by dislocations which represent either missing or extra planes (2). We discuss the optimization of structure and atomic ordering in Ni-Pt and FePt structures and correlations with magnetic properties by controlling thin film processing parameters and annealing conditions.
####
For more information, please click here
Contacts:
Matt Shipman
News Services
919.515.6386
Dr. Jay Narayan
919.515.7874
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||