Home > Press > Scientists home in on lithium battery safety flaws
Professor Clare Grey |
Abstract:
Scientists at Cambridge have developed a simple, accurate way of "seeing" chemistry in action inside a lithium-ion battery.
By helping them understand how these batteries behave under different conditions the new method - which involves Nuclear Magnetic Resonance (NMR) spectroscopy - could help researchers solve the fire safety problems that have dogged the development of these batteries.
Lithium-ion battery technology has enabled the development of many electronic devices we now take for granted, such as laptop computers and mobile phones.
Lithium battery technology will also be crucial for the development of the next generation of electric cars such as the Nissan Leaf, due to be built in the UK from 2013.
But lithium batteries have one serious disadvantage: over several charge and discharge cycles, particularly if the batteries are charged quickly, minute fibres of lithium, known as dendrites, can form on the carbon anodes. These lithium fibres can cause short circuits, causing the battery to rapidly overheat and catch fire.
Writing in the journal Nature Materials, Professor Clare Grey of the Department of Chemistry says: "These dead lithium fibres have been a significant impediment to the commercialisation of new generations of higher capacity batteries that use lithium metal as the anode instead of the carbons used today."
Scientists have use theoretical models and optical and scanning electron microscopes to study dendrite formation, but finding a way of quantifying the amount of dendrites formed has proved elusive until now.
The paper describes using a new method based on NMR spectroscopy to see chemistry in action within a tiny, 1cm long, battery enclosed in the same kind of aluminium bags used to keep coffee fresh.
According to Professor Grey: "Fire safety is a major problem that must be solved before we can get to the next generation of lithium-ion batteries and before we can safely use these batteries in a wider range of transportation applications. Now that we can monitor dendrite formation inside intact batteries, we can identify when they are formed and under what conditions.
Our new method should allow researchers to identify which conditions lead to dendrite formation and to rapidly screen potential fixes to prevent the problem."
Last month Professor Grey was awarded the Royal Society of Chemistry's John Jeyes Award in recognition of her world leadership role in using NMR methods to study structure and function in inorganic materials, particularly lithium ion batteries.
####
For more information, please click here
Contacts:
Tel: 01223 332300
Fax: 01223 330262
Copyright © Cambridge University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||