Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny magnetic switch discovered

Professor Rainer Herges (left) and Marcel Dommaschk irradiate a solution of the molecular magnet switch with blue-green and blue-violet light. The researchers can change the magnetic state of the molecule using the light waves. Copyright: CAU, Photo: Torsten Winkler
Professor Rainer Herges (left) and Marcel Dommaschk irradiate a solution of the molecular magnet switch with blue-green and blue-violet light. The researchers can change the magnetic state of the molecule using the light waves. Copyright: CAU, Photo: Torsten Winkler

Abstract:
Scientists at Kiel University develop molecular machine in form of record player

Tiny magnetic switch discovered

Kiel | Posted on January 28th, 2011

A Kiel research group headed by the chemist, Professor Rainer Herges, has succeeded for the first time in directly controlling the magnetic state of a single molecule at room temperature. The paper will appear this Friday (28 January 2011) in Science magazine. The switchable molecule, which is the result of a sub-project of the Collaborative Research Centre 677 "Function by Switching", could be used both in the construction of tiny electromagnetic storage units and in the medical imaging.

The scientists at the Kiel University developed a molecular machine constructed in a similar way to a record player. The molecule consists of a nickel ion surrounded by a pigment ring (porphyrin), and a nitrogen atom which hovers above the ring like the tone arm on a record player. "When we irradiate this molecule with blue-green light, the nitrogen atom is placed exactly vertically to the nickel ion like a needle", Rainer Herges explains. "This causes the nickel ion to become magnetic, because the pairing of two electrons is cancelled out", says the chemistry professor. The counter effect is blue-violet light: The nitrogen atom is raised, the electrons form a pair and the nickel ion is no longer magnetic. "We can repeat this switching of the magnetic state over 10,000 times by varied irradiation with the two different wavelengths of light, without wearing out the molecular machine or encountering side reactions", Herges enthuses.

The switch which has been discovered, with its diameter of only 1.2 nanometres, could be used as a tiny magnetic reservoir in molecular electronics. Most of all, hard disk manufacturers may be interested in this, as a higher storage capacity can be achieved by reducing the size of the magnetic particles on the surface of the disks. Professor Herges also believes the use of the magnetic switch in the medical field is feasible: "The record player molecule can be used intravenously as a contrast agent in MRT (magnetic resonance tomography) in order to search for tumours or constricted blood vessels. Initial tests in the University Medical Center Schleswig-Holstein's neuroradiology department were successful." As the signal-to-noise ratio is improved by the switching process, a smaller amount of the contrast agent is required than for the magnetic salts currently being used. In addition, according to Herges, the molecular machine could also serve as a basis for developing new contrast agents to depict such features as temperature, pH value or even certain biochemical markers in the body in a three-dimensional form. Rainer Herges lists the possible fields of application: "Using contrast agents such as these, it could be possible to localise centres of inflammation, detect tumours and visualise many metabolic processes."

The Christian-Albrechts-Universität zu Kiel has proven international expertise as a North German research university in the field of Nanoscience, for example, in the German Research Foundation's Collaborative Research Centre 677 "Function by Switching". Furthermore, the CAU is applying for the current round of the Excellence Initiative with a nano-excellence cluster.

Original publication:
Magnetic Bistability of Molecules in homogenous Solution at Room Temperature. Science 28 January 2011, DOI: 10.1126/science.1201180

####

For more information, please click here

Contacts:
Professor Dr Rainer Herges
Otto Diels Institute of Organic Chemistry
Christian-Albrechts-Universität zu Kiel
Phone: +49 (0)431 880-2440

Copyright © Christian-Albrechts-Universität zu Kiel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project