Home > Press > MRI images transplanted islet cells with help of positively charged nanoparticles
Abstract:
In a study to investigate the detection by MRI of six kinds of positively-charged magnetic iron oxide nanoparticles designed to help monitor transplanted islet cells, a team of Japanese researchers found that the charged nanoparticles they developed transduced into cells and could be visualized by MRI while three kinds of commercially available nanoparticles used for controls could not. The study is published in a recent special issue of Cell Medicine [3(1)], now freely available on-line at: www.ingentaconnect.com/content/cog/cm.
"Our data suggests that novel, positively-charged nanoparticles can be useful MRI contrast agents to monitor islet mass after transplantation," said study co-author Hirofumi Noguchi, MD, PhD, of the Department of Gastroenterological Surgery, transplant and Surgical Oncology at the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences. "Significant graft loss immediately after islet transplantation occurs due to immunological and non-immunological events. With MRI an attractive potential tool for monitoring islet mass in vivo, efficient uptake of MRI contrast agent is required for cell labeling."
The researchers note that recent techniques of labeling islet cells with magnetic iron oxide has allowed detection of transplanted islet cells, however commercially available magnetic nanoparticles are not efficiently transduced because the cell surface is negatively charged and the negative charge of the nanoparticles. The researchers developed positively charged nanoparticles that were efficiently transduced.
"This approach could potentially be translated into clinical practice for evaluating graft survival and for monitoring therapeutic intervention during graft rejection," concluded Dr. Noguchi.
This research was among those studies presented at the 37th Annual Meeting of the Japan Society for Organ Preservation and Medical Biology (JSOPMB). Sixteen studies were published in this special issue of Cell Medicine. The theme of the issue is "Organ/Cell Transplantation and Regenerative Medicine."
Citation. Oishi, K.; Noguchi, H.; Saito, H.; Yukawa, H.; Miyamoto, Y.; Ono, K.; Murase, K.; Sawada, M.; Hayashi, S. Novel positive-charged nanoparticles for efficient magnetic resonance imaging of islet transplantation. Cell Med. 3(1):43-49; 2012.
####
For more information, please click here
Contacts:
The editorial offices for Cell Medicine
are at the Center of Excellence for
Aging and Brain Repair
College of Medicine
The University of South Florida
Contact:
David Eve
Dr. Hirofumi Noguchi
Department of Gastroenterological Surgery
Transplant and Surgical Oncology
Okayama University Graduate School of Medicine
Dentistry and Pharmaceutical Sciences
2-5-1 Shikata
Okayama 700-8558 Japan
Tel + 81-86-235-7257
Fax + 81-86-221-8775
Copyright © Cell Transplantation Center of Excellence for Aging and Brai
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||