Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Well-ordered nanorods could improve LED displays

Abstract:
Scientists have utilized the imaging capabilities of the Cornell High Energy Synchrotron Source (CHESS) to help develop enhanced light-emitting diode displays using bottom-up engineering methods.

Well-ordered nanorods could improve LED displays

Ithaca, NY | Posted on October 24th, 2012

Collaborative work between researchers from the University of Florida and CHESS has resulted in a novel way to make colloidal "superparticles" from oriented nanorods of semiconducting materials. The work was published in the journal Science, Oct. 19.

The team synthesized nanorods with a cadmium selenide and cadmium sulfide shell. Taking advantage of the compounds' lattice mismatch interfaces, they assembled these rods into larger periodic colloidal structures, called superparticles.

The superparticles exhibit enhanced light emission and polarization, features that are important for fabrication of LED televisions and computer screens. The nucleated superparticles can further be cast into macroscopic polarized films. The films could increase efficiency in polarized LED television and computer screen by as much as 50 percent, the researchers say.

The team, which included CHESS scientist Zhongwu Wang, made use of the CHESS facility to collect small angle X-ray scattering data from specimens inside tiny diamond-anvil cells. They used this technique, in combination with high-resolution transmission electron microscopy, to analyze how nanorods with attached organic components could be formed into well-ordered structures.

The nanorods first align within a layer as hexagonally ordered arrays. Then the highly ordered nanorod arrays behave like a series of layered units, self-assembling into structures that exhibit long-range order as they grow into large superparticles. The elongated superparticles can be aligned in a polymer matrix into macroscopic films.

The project demonstrates how scientists are learning to recognize and exploit anisotropic interactions between nanorods, which can be adjusted during the synthesis process, to create single-domain, needle-like particles. The authors hope their work can lead to new processes of self-assembly to create nano-objects with other anisotropic shapes, perhaps even joining two or more types of objects to form well-defined mesoscopic and macroscopic architectures with greater and greater complexity.

The team was led by Charles Cao, professor of chemistry at the University of Florida. The lead author of the paper was Tie Wang of Cao's group.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5353


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project