Home > Press > Nanotube Arrays Produce High-Resolution Holograms
![]() |
Abstract:
For holographic display systems, the resolution and field of view are ultimately limited by the size of the pixels from which incident light is scattered, interfering to produce the projected image. Modern nanofabrication and lithographic processes make it possible to form precisely-defined subwavelength nanostructures, which, as reported by Prof. Haider Butt and co-workers for arrays of carbon nanotubes (CNTs), can be used to scatter light in a controlled way, resulting in extremely high-resolution, low-noise holographic images.
Due to their metallic properties, CNTs exhibit strong diffraction effects when arranged on dimensions close to the wavelength of visible light. The researchers first calculated using Fourier optics the precise array required to produce a diffraction pattern spelling "CAMBRIDGE" and subsequently fabricated this on a silicon substrate using plasma-enhanced chemical vapour deposition. When the surface was irradiated with laser light, the desired diffraction pattern in the far field was successfully obtained (schematic of experimental setup (a) and the captured diffraction pattern on a semitransparent screen (b) are shown below).
The CNTs comprising the array represent the smallest pixels ever used to produce holograms. The nanometer-scale dimensions provide not only high resolution, but also high contrast and a large field of view. With the fine control of scattering demonstrated, this work brings the use of complex nanostructures in 3D holography a significant step closer.
The research was reported in Advanced Optical Materials, a new section in Advanced Materials dedicated to breakthrough discoveries and fundamental research in photonics, plasmonics, metamaterials, and more, covering all aspects of light-matter interactions. Advanced Optical Materials will start as an independent journal in 2013. More information can be found on www.advopticalmat.de.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Link to the original paper on Wiley Online Library:
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |