Home > Press > Anasys report on EPFL researchers applying AFM-based infrared spectroscopy to the study of drug resistant bacteria
Experienced microscopist, Dr. Sunny Jeong from EPFL using the Anasys nano-IR |
Abstract:
Dr Andrzej Kulik is a research associate in the Laboratory of the Physics of Living Matter at the EPFL in Switzerland. Under the leadership of Professor Giovanni Dietler, the research activity of the laboratory of physics of living matter is mainly devoted to the study of DNA topology, cellular machines, protein mechanics and high-resolution low temperature Atomic Force Microscopy (AFM). Through internal and external collaborations, a certain number of other research activities are carried out in particular on knots hydrodynamics, DNA gel electrophoresis, cell elasticity, cell motility, etc.
Kulik and his colleagues are measuring the mechanical properties of proteins, cells and tissues. To date, AFM has been the main tool but is now complemented with the arrival of a nanoIR™ AFM-IR system from Anasys.
Describing his work, Kulik says "the nanoIR is presently used in two projects - antibiotic resistant bacteria, and transformation of Aß42 monomers to amyloid cross ß-sheets. The chemical analysis at submicron scale allows us to study small quantities of difficult-to-get proteins or even just one single bacterium at a time. It is supposed that antibiotic-resistant bacteria have a different IR spectra to non-resistant ones. If this technique is successful, it will allow us to determine quickly and at the single bacteria level the type of bacteria contained in the sample. Functional imaging is especially practical when an IR absorption image at the nanoscale can be quickly obtained using one, well-chosen wavelength. Using the system to date, we have been amazed by the extremely low noise of the AFM part of nanoIR which gives us excellent resolution."
Prior to using AFM-IR, Kulik applied multiple electron and atomic force microscopes to his research. He also used scanning near-field and acoustic microscopies. With his Anasys system, Kulik is making nanoscale measurements with the combination of AFM and IR spectroscopy. "Our specimens are of an optimum size for the nanoIR work. Together with its open architecture design and excellent applications support have allowed us to attempt novel experiments. In short, the full potential of the technique is still for us to discover!"
####
About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products that measure material properties for samples with spatially varying physical and chemical properties at the nanoscale. Anasys introduced the nano-TA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement. Most recently, Anasys is proud to introduce the breakthrough Lorentz Contact Resonance, which pioneers the field of wideband nanomechanical spectroscopy.
For more information, please click here
Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310
www.anasysinstruments.com
Media contact:
Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
www.talking-science.com
Copyright © Anasys Instruments
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||