Home > Press > Stirred, not shaken: Physicists gain more particle control
Abstract:
Cornell physicists can now precisely control how particles in viscous liquids swirl, twirl and whirl. Think of coffee and adding cream -- and gaining control of the particles in the cream. Understanding this concept could allow chemists, physicists and engineers to better detect molecules, control the mixture of nanoscale particles and enhance self-assembly in solutions.
Brian Leahy, Cornell doctoral student in the field of physics, presented "Revisiting Taylor Dispersion: Differential Enhancement of Rotational and Translational Diffusion Under Oscillatory Shear" at the American Physical Society meeting, Baltimore, March 18. His co-researchers include: Xiang Cheng, physics postdoctoral researcher; Itai Cohen, professor of physics; and Desmond Ong '11.
If you stir, diffusion -- the random jostling of small particles from thermal energy -- is enhanced. This enhancement is called Taylor dispersion. "Stirring transports the cream through the coffee and also enhances diffusion of the cream particles," said Leahy.
Using 3-D imaging microscopes, the physicists can now also see the orientation of oblong particles in a viscous fluid, providing the ability to measure the individual particle rotation rates for the first time.
"By adding shear and adjusting the flow, particles can not only be oriented but their rotational diffusion can also change," said Leahy.
In a fluid, oblong particles that are small enough can change their orientation due to rotational diffusion that arises when fluid molecules kick the particles in random directions. When the particle-laden fluid is rubbed between two oscillating plates, the oblong particles also rotate end-on-end in what is known as a Jeffery's orbit.
The researchers showed that the combination of rotational diffusion and Jeffery orbits has an effect that is bigger than the so-called "sum of the parts," so that the particles change their orientation faster than either mechanism alone.
While this is basic, physical research, understanding these concepts could lead to opportunities in other fields, said Cohen: improved self-assembly of specially shaped particles, designer materials, or producing liquids with directional dependence that flow easily.
Leahy is supported by a National Defense Science and Engineering Graduate Fellowship.
####
For more information, please click here
Contacts:
Media Contact:
John Carberry
(607) 255-5553
Cornell Chronicle:
Blaine Friedlander
(607) 254-8093
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||