Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Florida State University's unofficial 'Spider-Man' follows nature's lead

Eden Steven tested whether his spider silk wires would conduct electricity when bent — they did.
Eden Steven tested whether his spider silk wires would conduct electricity when bent — they did.

Abstract:
Eden Steven, a physicist at Florida State University's MagLab facility, discovered that simple methods can result in surprising and environmentally friendly high-tech outcomes during his experiments with spider silk and carbon nanotubes, the results of which are now published in the online research journal Nature Communications.

Florida State University's unofficial 'Spider-Man' follows nature's lead

Tallahassee, FL | Posted on September 13th, 2013

"If we understand basic science and how nature works, all we need to do is find a way to harness it," Steven said. "If we can find a smart way to harness it, then we can use it to create a new, cleaner technology."

Steven is the lead investigator on the paper "Carbon nanotubes on a spider silk scaffold." The experiment may result in practical applications in electrical conductivity and more.

Think of a nanotube as a one-atom thick sheet of carbon that's been rolled into an infinitesimally tiny tube. A nanotube's diameter is at least 10,000 times smaller than a strand of human hair. Physicists know that when things get that microscopically minute, they act very strange. Researchers worldwide are intrigued by the properties of carbon nanotubes, including their amazing strength and ability to conduct electricity and heat.

Steven wanted to see what would happen when strands of spider silk were coated with carbon nanotubes. Keeping with his theme of simplicity, he gathered the spider silk himself, hiking around the MagLab and using a stick to gather webs. To adhere the powdery carbon nanotubes to the spider silk, he ultimately discovered that just a drop of water worked best.

The dazzling results have drawn the attention of national media. Steven, now unofficially known as the MagLab's Spider-Man, has already been interviewed by Discovery News, New Scientist, Materials 360 and The Hindu.

"It turns out that this high-grade, remarkable material has many functions," Steven said of the silk coated in carbon nanotubes. "It can be used as a humidity sensor, a strain sensor, an actuator (a device that acts as an artificial muscle, for lifting weights and more) and as an electrical wire."

Rather than add to the already immense amount of toxic elements and complex, non-biodegradable plastics found in today's electronic devices and as pollution in our environment, Steven wanted to investigate eco-friendly materials. He was especially interested in materials that could deal with humidity without complicated treatments and chemical additives. Spider silk fit the bill.

"Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications," Steven wrote in the Nature Communications paper. "Spider silk is tough, but becomes soft when exposed to water. … The nanotubes adhere uniformly and bond to the silk fiber surface to produce tough, custom-shaped, flexible and electrically conducting fibers after drying and contraction."

Steven collaborated with six other scientists on the research project, including Florida State University Physics Department Chair James Brooks and Fulbright scholar and Iraqi physicist Wasan Saleh. Saleh worked with Steven and Brooks at the MagLab in 2011 as one of 10 Iraqi Fulbright scholars, and the only woman in the Iraqi group, to visit Florida State that summer.

In addition to Saleh, with the University of Baghdad, the other researchers who collaborated on the paper were: Steve F.A. Acquah, with the FSU Department of Chemistry and Biochemistry; Rufina G. Alamo, with the FAMU-FSU Department of Chemical and Biomedical Engineering; Victor Lebedev, with the Institute of Materials Science of Barcelona; and Vladimir Laukhin, with the Catalan Institution for Research and Advanced Studies in Barcelona.

Fostering such diverse scientific alliances is part of what makes the MagLab a dynamic workplace.

"The Magnet Lab and its sister materials centers at FSU provide an interdisciplinary environment that attracts the expertise of scientists from across the entire university and around the world to come here to do collaborative science," said MagLab physicist Brooks. "In such an environment the scientific imagination can run wild in unexpected directions."

The National Science Foundation, the Department of Energy and the State of Florida supported this work. MagLab scientist Yi-Feng Su and Xixi Jia assisted with the transmission electron microscopy study; MagLab postdoctoral associate Jin Gyu Park assisted in the tensile measurement and Raman spectroscopy study; and spectroscopy facilities were provided by FSU's High-Performance Materials Institute.

####

For more information, please click here

Contacts:
Eden Steven

850-228-3903

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the research project visit the MagLab’s media center:

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project