Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting

Illustration: Jose-Luis Olivares/MIT
Illustration: Jose-Luis Olivares/MIT

Abstract:
Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products — which include electronics, automotive and aircraft parts, pharmaceuticals, and food — can pose safety risks and cost governments and private companies hundreds of billions of dollars annually.

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting

Cambridge, MA | Posted on April 15th, 2014

Many strategies have been developed to try to label legitimate products and prevent illegal trade — but these tags are often too easy to fake, are unreliable, or cost too much to implement, according to MIT researchers who have developed a new alternative.

Led by MIT chemical engineering professor Patrick Doyle and Lincoln Laboratory technical staff member Albert Swiston, the researchers have invented a new type of tiny, smartphone-readable particle that they believe could be deployed to help authenticate currency, electronic parts, and luxury goods, among other products. The particles, which are invisible to the naked eye, contain colored stripes of nanocrystals that glow brightly when lit up with near-infrared light.

These particles can easily be manufactured and integrated into a variety of materials, and can withstand extreme temperatures, sun exposure, and heavy wear, says Doyle, the senior author of a paper describing the particles in the April 13 issue of Nature Materials. They could also be equipped with sensors that can "record" their environments — noting, for example, if a refrigerated vaccine has ever been exposed to temperatures too high or low.

The paper's lead authors are MIT postdoc Jiseok Lee and graduate student Paul Bisso. MIT graduate students Rathi Srinivas and Jae Jung Kim also contributed to the research.

'A massive encoding capacity'

The new particles are about 200 microns long and include several stripes of different colored nanocrystals, known as "rare earth upconverting nanocrystals." These crystals are doped with elements such as ytterbium, gadolinium, erbium, and thulium, which emit visible colors when exposed to near-infrared light. By altering the ratios of these elements, the researchers can tune the crystals to emit any color in the visible spectrum.

To manufacture the particles, the researchers used stop-flow lithography, a technique developed previously by Doyle. This approach allows shapes to be imprinted onto parallel flowing streams of liquid monomers — chemical building blocks that can form longer chains called polymers. Wherever pulses of ultraviolet light strike the streams, a reaction is set off that forms a solid polymeric particle.

In this case, each polymer stream contains nanocrystals that emit different colors, allowing the researchers to form striped particles. So far, the researchers have created nanocrystals in nine different colors, but it should be possible to create many more, Doyle says.

Using this procedure, the researchers can generate vast quantities of unique tags. With particles that contain six stripes, there are 1 million different possible color combinations; this capacity can be exponentially enhanced by tagging products with more than one particle. For example, if the researchers created a set of 1,000 unique particles and then tagged products with any 10 of those particles, there would be 1030 possible combinations — far more than enough to tag every grain of sand on Earth.

"It's really a massive encoding capacity," says Bisso, who started this project while on the technical staff at Lincoln Lab. "You can apply different combinations of 10 particles to products from now until long past our time and you'll never get the same combination."

"The use of these upconverting nanocrystals is quite clever and highly enabling," says Jennifer Lewis, a professor of biologically inspired engineering at Harvard University who was not involved in the research. "There are several striking features of this work, namely the exponentially scaling encoding capacities and the ultralow decoding false-alarm rate."

Versatile particles

The microparticles could be dispersed within electronic parts or drug packaging during the manufacturing process, incorporated directly into 3-D-printed objects, or printed onto currency, the researchers say. They could also be incorporated into ink that artists could use to authenticate their artwork.

The researchers demonstrated the versatility of their approach by using two polymers with radically different material properties — one hydrophobic and one hydrophilic —to make their particles. The color readouts were the same with each, suggesting that the process could easily be adapted to many types of products that companies might want to tag with these particles, Bisso says.

"The ability to tailor the tag's material properties without impacting the coding strategy is really powerful," he says. "What separates our system from other anti-counterfeiting technologies is this ability to rapidly and inexpensively tailor material properties to meet the needs of very different and challenging requirements, without impacting smartphone readout or requiring a complete redesign of the system."

Another advantage to these particles is that they can be read without an expensive decoder like those required by most other anti-counterfeiting technologies. Using a smartphone camera equipped with a lens offering twentyfold magnification, anyone could image the particles after shining near-infrared light on them with a laser pointer. The researchers are also working on a smartphone app that would further process the images and reveal the exact composition of the particles.

The research was funded by the U.S. Air Force, the Office of the Assistant Secretary of Defense for Research and Engineering, the Singapore-MIT Alliance, the National Science Foundation, the U.S. Army Research Office, and the National Institutes of Health.

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New chip ramps up AI computing efficiency August 19th, 2022

How randomly moving electrons can improve cyber security May 27th, 2022

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project