MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel NIL methodology improves ordering in periodic arrays from BCPs

Abstract:
The low-cost scalable methodology suggested in Nanotechnology by the ICN2 Phononic and Photonic Nanostructures Group demonstrated an improvement in ordering of the nanodot lattice of up to 50%.

Novel NIL methodology improves ordering in periodic arrays from BCPs

Barcelona, Spain | Posted on May 30th, 2014

Block copolymers (BCPs) are the most attractive alternative to date for the fabrication of well-defined complex periodic structures with length scales below 100 nm. Such small structures might be used in a wide range of technological applications but current available methods are very expensive, especially when those structures present length scales under 20 nm.

A work led by the Institut Català de Nanociència i Nanotecnologia (ICN2) Phononic and Photonic Nanostructures Group suggests a new method to produce hexagonal periodic arrays with high fidelity while reducing time and costs. ICREA Research Professor Dr Clivia M. Sotomayor Torres and Dr Claudia Simão conducted, together with the authors listed below, a work published in the latest issue of Nanotechnology and featured cover article.

The methodology consists on in situ solvent-assisted nanoimprint lithography of block copolymers, a technique which combines a top-down approach - nanoimprint lithography - with a bottom-up one - self-assembled block copolymers (bottom-up). The process is assisted with solvent vapors to facilitate the imprint and simultaneous self-assembly of high Flory-Huggins parameter BCPs, the ones that yield sub-15 nm size features, in what has been called solvent vapors assisted nanoimprint lithography (SAIL).

SAIL is a scalable technique which has shown its efficiency over a large area of up to 4 square inches wafers. The resulting sample was analysed using different methods, including field emission scanning electron microscopy (FE-SEM) and grazing-incidence small-angle x-ray scattering (GISAXS). The latter was performed at the Diamond synchrotron light source (UK) and allowed characterisation of structural features of the nanostructured polymer surfaces. It is the first time that GISAXS has been used to analyse a direct-nanoimprint BCP sample.

The results obtained with SAIL demonstrated an improvement in ordering of the nanodot lattice of up to 50%. It is a low cost, scalable and fast technique which brings self-assembled BCPs closer to their industrial application. These versatile materials are very interesting for applications such as storage devices, nano-electronics, low-k dielectrics or biochemical applications.

####

For more information, please click here

Contacts:
Dr Claudia Simão
claudia.simao@icn.cat

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project