Home > Press > Ultra-short pulse lasers & Positioning
Abstract:
Applications in basic research, medical science and industry
Ultra-short pulsed lasers are no longer used mainly in the laboratories of basic researchers. They are an important part in the industry for cutting, surface finishing and pattern recognition and also in medical science. In medical science amongst others they are in place for the detection of cancer cells.
Specialized microscopes combined with the ultra-short pulse laser reach a higher resolution. Therefore it is possible to differ healthy cells from cancer cells.
Definition of the project
In an experimental set-up (please see figure 1) for the generation of high energy ultra-short pulsed lasers lithographically produced gratings need to be adjusted within a few nanometers each to another. These gratings decompose and assemble the laser spectrally. The adjusting degree of freedom needs to be smaller than 70 nm or 80 ΅rad. Where the adjustable mass can weigh up to 20 kg (44 lbs), a 5-axis control (3 rotary and 2 translational axes) is necessary to adjust the laser under these conditions. Because of the control it is possible to monitor the position of each degree of freedom. The reached position has to be long-term stable with uncertainties of a few nanometers. Otherwise a modular set-up is required.
In an experimental set-up with a hexapod system these specifications could not be achieved. Hexapod systems allow an easy multidimensional adjustment but the long term stability in nanometer scale is very difficult. In consequence the customer decided against the hexapod solution.
To reach the required long term stability the new solution from piezosystem jena is very compact. In a first work step all the 5 axes can be positioned within single figure microns. Based on the accuracy of the first positioning piezo actuators with a high stiffness and stability but small motion can be used for fine tuning. The solution is well suited to build in a modular way.
Basic advantages of the adjusting device
very stable design with temperature-adjusted substrate to the grating (please see figure 2)
rough positioning up to the lowest ΅m-level, the rough positioning is already calibrated
fine positioning with preloaded piezo actuators
punctual tensile and pressure forces provide that no tensions influence the grating
piezo actuators are operated approximately with 25% of the maximal stroke
long lasting life time
sufficient control reserve available
usage of common drives and the related controller
fulfils requirements for a cost-effective scalability
Controlled motions of single figure nanometers have been tested and confirmed in a first laboratory set-up (figure 3, table 1). With an active adjustment control these parameters can theoretically be hold for an infinite time. Single steps scaled down to 1 nanometer could be realized without any risk.
Summary
In comparison to the hexapod system the long term stability and the step width could be clearly improved by the use of piezosystem jena grating adjustment system. The redesigned arrangement of the positioning components leads to a compact design with a high stiffness. The improved grating adjustment system is less sensitive to external influences because of the compact design and the used materials. All requirements in regard to the positioning and the long term stability could be fulfilled.
####
For more information, please click here
Contacts:
Theresa Kuntze
Copyright © Piezosystem Jena GmbH
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled wobble in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||