Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition

Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero.
Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero.

Abstract:
Heat drives classical phase transitions-think solid, liquid, and gas-but much stranger things can happen when the temperature drops. If phase transitions occur at the coldest temperatures imaginable, where quantum mechanics reigns, subtle fluctuations can dramatically transform a material.

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition

Upton, NY | Posted on September 15th, 2014

Scientists from the U.S. Department of Energy's Brookhaven National Laboratory and Stony Brook University have explored this frigid landscape of absolute zero to isolate and probe these quantum phase transitions with unprecedented precision.

"Under these cold conditions, the electronic, magnetic, and thermodynamic performance of metallic materials is defined by these elusive quantum fluctuations," said study coauthor Meigan Aronson, a physicist at Brookhaven Lab and professor at Stony Brook. "For the first time, we have a picture of one of the most fundamental electron states without ambient heat obscuring or complicating those properties."

The scientists explored the onset of ferromagnetism-the same magnetic polarization exploited in advanced electronic devices, electrical motors, and even refrigerator magnets-in a custom-synthesized iron compound as it approached absolute zero.

The research provides new methods to identify and understand novel materials with powerful and unexpected properties, including superconductivity-the ability to conduct electricity with perfect efficiency. The study will be published online Sept. 15, 2014, in the journal Proceedings of the National Academy of Sciences.

"Exposing this quantum phase transition allows us to predict and potentially boost the performance of new materials in practical ways that were previously only theoretical," said study coauthor and Brookhaven Lab physicist Alexei Tsvelik.

Mapping Quantum Landscapes

The presence of heat complicates or overpowers the so-called quantum critical fluctuations, so the scientists conducted experiments at the lowest possible temperatures.

"The laws of thermodynamics make absolute zero unreachable, but the quantum phase transitions can actually be observed at nonzero temperatures," Aronson said. "Even so, in order to deduce the full quantum mechanical nature, we needed to reach temperatures as low as 0.06 Kelvin-much, much colder than liquid helium or even interstellar space."

The researchers used a novel compound of yttrium, iron, and aluminum (YFe2Al10), which they discovered while searching for new superconductors. This layered, metallic material sits poised on the threshold of ferromagnetic order, a key and very rare property.

"Our thermodynamic and magnetic measurements proved that YFe2Al10 becomes ferromagnetic exactly at absolute zero-a sharp contrast to iron, which is ferromagnetic well above room temperature," Aronson said. "Further, we used magnetic fields to reverse this ferromagnetic order, proving that quantum fluctuations were responsible."

The collaboration produced near-perfect samples to prove that material defects could not impact the results. They were also the first group to prepare YFe2Al10 in single-crystal form, which allowed them to show that the emergent magnetism resided within two-dimensional layers.

"As the ferromagnetism decayed with heat or applied magnetic fields, we used theory to identify the spatial and temporal fluctuations that drove the transition," Tsvelik said. "That fundamental information provides insight into countless other materials."

Quantum Clues to New Materials

The scientists plan to modify the composition of YFe2Al10 so that it becomes ferromagnetic at nonzero temperatures, opening another window onto the relationship between temperature, quantum transitions, and material performance.

"Robust magnetic ordering generally blocks superconductivity, but suppressing this state might achieve the exact balance of quantum fluctuations needed to realize unconventional superconductivity," Tsvelik said. "It is a matter of great experimental and theoretical interest to isolate these competing quantum interactions that favor magnetism in one case and superconductivity on the other."

Added Aronson, "Having more examples displaying this zero-temperature interplay of superconductivity and magnetism is crucial as we develop a holistic understanding of how these phenomena are related and how we might ultimately control these properties in new generations of materials."

Other authors on this study include Liusuo Wu, Moosung Kim, and Keeseong Park, all of Stony Brook University's Department of Physics and Astronomy.

The research was conducted at Brookhaven Lab's Condensed Matter Physics and Materials Science Department and supported by the U.S. Department of Energy's Office of Science (BES).

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Justin Eure
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project