Home > Press > Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions
Image: Prabhas Moghe, et. al. Rare-earth nanoparticles encapsulated in albumin shells glow under infrared light. |
Abstract:
A new medical imaging method being developed at Rutgers University could help physicians detect cancer and other diseases earlier than before, speeding treatment and reducing the need for invasive, time-consuming biopsies.
The potentially lifesaving technique uses nanotechnology to reveal small cancerous tumors and cardiovascular lesions deep inside the body. It is showing promise in early tests by Rutgers researchers in the schools of engineering and pharmacy.
The Rutgers scientists, who published initial results of their work in the July issue of the journal Nature Communications, were recently awarded a $2.2 million grant from the National Institute of Biomedical Imaging and Bioengineering, part of the National Institutes of Health, to advance their research.
"Our new mode of fluorescent imaging aims not only to reveal diseases earlier, but also to learn more about the diseases before performing surgery," said Prabhas Moghe, the lead researcher on the project and distinguished professor of biomedical engineering and chemical and biochemical engineering. "I like to think of it as an optical biopsy."
"This technique could eventually be used to accurately determine whether a newly detected cancer has spread to nearby lymph nodes, which should help a surgeon deal with the full extent of disease during a single surgery," said Shridar Ganesan, associate director for Translational Science at Rutgers Cancer Institute of New Jersey and clinical advisor for the project. Currently a surgeon who can't tell how far a cancer has spread may do lymph node biopsies and wait a day for results and then perform a second surgery if needed, with its attendant trauma, risks and costs.
The Rutgers technology, co-developed by Richard Riman, distinguished professor of Materials Science and Engineering, uses a different type of infrared light than is used for imaging today. Called shortwave infrared, it penetrates skin and other tissue more deeply than visible light or the near-infrared light used in current imaging methods. This light stimulates dyes made with nanocrystals of rare earth elements - a family of 17 similar metals that are not scarce but are difficult to mine. Rare earths are in growing demand for electronic products such as smart phones, video screens and electric car motors and batteries.
While scientists and physicians have long recognized the potential value of shortwave infrared light, fluorescent dyes that react to this light have either been too toxic to use safely or could not deliver sharp images. The dyes that Moghe and his team are developing encapsulate rare-earth nanocrystals in a shell of human serum albumin. They are well tolerated, distribute quickly through the body and accumulate at the disease sites.
The researchers can employ different types rare-earth elements, which glow under slightly different colors of shortwave infrared light, to create a family of probes that are sensitive to a variety of cancers. "In this way, we can get a precise picture of the makeup and stage of the disease," he said.
The researchers have demonstrated positive results in laboratory mice, and have shown that the spread of cancer even on a very small scale can be detected earlier than with traditional techniques such as magnetic resonance imaging or near-infrared imaging. This may open up new avenues for early intervention.
Working with Moghe and Riman are engineering colleagues Charles Roth, Vidya Ganapathy and Mark Pierce along with Mei-Chee Tan, a professor at the Singapore University of Technology & Design. Also participating are graduate students Margot Zevon, Harini Kantamneni, and Laura Higgins.
####
For more information, please click here
Contacts:
Carl Blesch
848-932-0550
Copyright © Rutgers University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||