Home > Press > How bacteria control their size: By monitoring thousands of individual bacteria scientists discovered how they maintain their size from generation to generation
Methicillin-resistant Staphylococcus aureus, or MRSA, are so uniform in size they look like they were made in a factory. How do the bacteria manage to keep their size so uniform? |
Abstract:
Scientists have traditionally studied bacteria in large numbers, not individually. Working with tens of millions of cells in a culture flask, they tracked their growth by looking at how much the cells dimmed light passing through a tube.
E. coli growing in a "mother machine" that lets scientists study the reproduction of individual bacteria. The machine consists of growth channels at right angles to a trench that is continually flushed with growth medium.
Using this method, scientists learned that populations of bacteria grow exponentially, doubling in mass at regular time intervals. And so, not unreasonably, they assumed that individual cells would do the same, dividing only when they have doubled in size.
In the Dec. 24 online issue of Current Biology a group of scientists led by Suckjoon Jun of the University of California-San Diego, and including Petra Levin, PhD, associate professor of biology in Arts & Sciences at Washington University in St. Louis, report that this hypothesis was incorrect.
"Even though on average it is true that mass doubles," Levin said, "when you look at individual cells it becomes apparent that something else is going on."
Instead of examining populations of cells growing in a flask or test tube, the Jun group instead used a microfluidics device called a "mother machine" to follow hundreds of thousands of individual cells from birth to division.
They found that rather than doubling in size every generation, each cell added the same volume (or mass; the term reflects the measurement technique). Crucially a cell that was small added the same volume as a cell that was large.
Why is this the rule? "Although this might seem counter-intuitive, over many generations this rule ensures that cells in a population maintain a constant size," Levin said.
"This study really shows how new technologies, in this case the development of the 'mother machine' to visualize single bacteria in real time, can lead to new and unexpected answers to old problems," Levin said.
"Pinning down the growth rule is important," she added, "because it provides clues to the underlying biochemical mechanism that ultimately controls growth. The mechanism is probably essential -- or nearly so -- and thus good target for new antimicrobials."
"Surprisingly little is known about biological size control in general," Levin said.
"Why are we the size we are? Why are our organs the size they are? Why are the cells in those organs a stereotypical size? What regulates that?"
"We take all this for granted," she said, "but really, very little of it is understood."
####
For more information, please click here
Contacts:
Diana Lutz
314-935-5272
Copyright © Washington University in St. Louis
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||