Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New laser could upgrade the images in tomorrow’s tech

Photo vis Shutterstock
Photo vis Shutterstock

Abstract:
A new semiconductor laser developed at Yale has the potential to significantly improve the imaging quality of the next generation of high-tech microscopes, laser projectors, photo lithography, holography, and biomedical imaging.

New laser could upgrade the images in tomorrow’s tech

New Haven, CT | Posted on January 19th, 2015

Based on a chaotic cavity laser, the technology combines the brightness of traditional lasers with the lower image corruption of light emitting diodes (LEDs). The search for better light sources for high-speed, full-field imaging applications has been the focus of intense experimentation and research in recent years.

The new laser is described in a paper in the Jan. 19 online edition of the Proceedings of the National Academy of Sciences. Several Yale labs and departments collaborated on the research, with contributions from scientists in applied physics, electrical and biomedical engineering, and diagnostic radiology.

"This chaotic cavity laser is a great example of basic research ultimately leading to a potentially important invention for the social good," said co-author A. Douglas Stone, the Carl A. Morse Professor and chair of applied physics, and professor of physics. "All of the foundational work was primarily motivated by a desire to understand certain classes of lasers — random and chaotic — with no known applications. Eventually, with input from other disciplines, we discovered that these lasers are uniquely suited for a wide class of problems in imaging and microscopy."

One of those problems is known as "speckle." Speckle is a random, grainy pattern, caused by high spatial coherence that can corrupt the formation of images when traditional lasers are used. A way to avoid such distortion is by using LED light sources. The problem is, LEDs are not bright enough for high-speed imaging.

The new, electrically pumped semiconductor laser offers a different approach. It produces an intense emission, but with low spatial coherence.

"For full-field imaging, the speckle contrast should be less than ~4% to avoid any disturbance for human inspection," explained Hui Cao, professor of applied physics and of physics, who is the paper's corresponding author. "As we showed in the paper, the standard edge-emitting laser produced speckle contrast of ~50%, while our laser has the speckle contrast of 3%. So our new laser has completely eliminated the issue of coherent artifact for full-field imaging."

Co-author Michael A. Choma, assistant professor of diagnostic radiology, pediatrics, and biomedical engineering, said laser speckle is a major barrier in the development of certain classes of clinical diagnostics that use light. "It is tremendously rewarding to work with a team of colleagues to develop speckle-free lasers," Choma said. "It also is exciting to think about the new kinds of clinical diagnostics we can develop."

The first author of the paper is Brandon Redding. Additional authors included Alexander Cerjan, Xue Huang, and Minjoo Larry Lee.

Redding and Cao designed, fabricated, and tested the new laser. Lee and Huang grew the laser's semiconductor wafer via molecular beam epitaxy, and helped in fabrication and testing. Choma aided in the design and performance criteria for the laser, provided expertise in spatial coherence and speckle in imaging, and is working with Redding to apply the laser for full-field imaging at Yale School of Medicine. Stone and Cerjan modeled the laser and analyzed its characteristics.

####

For more information, please click here

Contacts:
Jim Shelton
(203) 432-3881

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project