Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Analogue quantum computers: Still wishful thinking? Many challenges lie ahead before quantum annealing, the analogue version of quantum computation, contributes to solve combinatorial optimisation problems

Abstract:
Traditional computational tools are simply not powerful enough to solve some complex optimisation problems, like, for example, protein folding. Quantum annealing, a potentially successful implementation of analogue quantum computing, would bring about an ultra-performant computational method. A series of reviews in this topical issue of EPJ ST, guest-edited by Sei Suzuki from Saitama Medical University, Japan, and Arnab Das from the Indian Association for the Cultivation of Science, Kolkota, India, focuses on the state of the art and challenges in quantum annealing. This approach, if proven viable, could greatly boost the capabilities of large-scale simulations and revolutionise several research fields, from biology to economics, medicine and material science.

Analogue quantum computers: Still wishful thinking? Many challenges lie ahead before quantum annealing, the analogue version of quantum computation, contributes to solve combinatorial optimisation problems

Heidelberg, Germany | Posted on February 12th, 2015

A Canadian company called D-Wave has been commercialising what it claims are two quantum annealers of 100 qubits, since 2011, and 500 qubits, since 2013. "Unlike a bit in a traditional computer, which can take values either 0 OR 1, a quantum bit (qubit) in a quantum computer can take values which are superimpositions of 0 AND 1, like a switch in a state of being on and off simultaneously," explains Das.

The trouble, Suzuki explains, is that "computation using the quantum mechanics is technically difficult and was thought to be unrealistic until recently." Before the advent of the D-Wave machines, realising and manipulating such a superimposed state in real hardware beyond the size of a few (< 10) qubits seemed to be a daunting task. Interaction with the environment rapidly decays such strange superposition states into ordinary 0 OR 1 states, according to Das. As Suzuki notes: "This is because of the insufficiency of techniques that control and protect microscopic elements against disturbances."

There have been speculations from the science community as to whether the D-Wave technology actually delivers quantum annealing. "The reviews of our latest issue show that the performances of the D-Wave machines as quantum computers, while noteworthy, have remained essentially inconclusive," explains Das, "and scientists have not been able to definitively ascertain that such a device qualifies as a true quantum object."

###

References:

S. Suzuki and A. Das (2015), Quo Vadis quantum annealing?, European Physical Journal Special Topics 224/1, DOI: 10.1140/epjst/e2015-02337-1

A. Das and S. Suzuki (2015), Debate and discussion: Quo Vadis quantum annealing?, European Physical Journal Special Topics 224/1, DOI: 10.1140/epjst/e2015-02351-3

####

For more information, please click here

Contacts:
Joan Robinson

49-622-148-78130

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project