Home > Press > Researchers Glimpse Distortions in Atomic Structure of Materials
![]() |
The image on the left shows distortion of lanthanum and strontium directly resolved at the the atomic scale. Blue and red colors indicate contraction and expansion of the local structure respectively. The image on the right shows that the aluminum and tantalum sites exhibit dramatically different distortion behavior due to bonding. Image credit: James LeBeau |
Abstract:
"Direct observation of charge mediated lattice distortions in complex oxide solid solutions"
Authors: Xiahan Sang, Everett D. Grimley, Changning Niu, Douglas L. Irving, and James M. LeBeau, North Carolina State University
Published: Feb. 13, Applied Physics Letters
DOI: 10.1063/1.4908124
Abstract: Using aberration corrected scanning transmission electron microscopy combined with advanced imaging methods, we directly observe atom column specific, picometer-scale displacements induced by local chemistry in a complex oxide solid solution. Displacements predicted from density functional theory were found to correlate with the observed experimental trends. Further analysis of bonding and charge distribution were used to clarify the mechanisms responsible for the detected structural behavior. By extending the experimental electron microscopy measurements to previously inaccessible length scales, we identified correlated atomic displacements linked to bond differences within the complex oxide structure.
Researchers from North Carolina State University are using a technique they developed to observe minute distortions in the atomic structure of complex materials, shedding light on what causes these distortions and opening the door to studies on how such atomic-scale variations can influence a material's properties.
Researchers have known for years that the properties of complex materials, such as alloys, are influenced by how the material's component atoms are organized - i.e., where the atoms fit into the material's crystal structure. But the devil was in the details.
"We knew where the atoms were on average, but we also knew that there were variations in a material - there can be significant displacements, where atoms don't fit into that average pattern," says Dr. Doug Irving, an associate professor of materials science and engineering at NC State and co-author of a paper describing the new work.
"However, detecting these distortions required indirect methods that could be difficult to interpret, so we couldn't fully explore how a material's atomic structure affects its properties," says Dr. James LeBeau, an assistant professor of materials science and engineering at NC State and corresponding author of a paper describing the new work.
"Now we've come up with a way to see the distortions directly, at the atomic scale," LeBeau says. "We can create a precise map of atomic organization, including the distortions, within a material. Not only which atoms fit into the structure, but how far apart they are, and how distortions in the structure are related to the chemistry of the material."
The work builds on a technique LeBeau developed called revolving scanning transmission electron microscopy (revolving STEM).
To test the technique and learn more about the links between structural distortions and chemical bonds, the researchers looked at a complex material called lanthanum strontium aluminum tantalum oxide (LSAT). They picked LSAT because there is significant variability in the nature of the chemical bonds within the material.
"It's a mess," LeBeau says. "We didn't know how the complexity of those bonds influenced structural distortions, and we wanted to see if revolving STEM would give us any insights."
It did.
The researchers found that the weaker chemical bonds that hold lanthanum and strontium in place in LSAT's atomic structure made them more susceptible to being pushed or pulled by small variations in their chemical environment.
"We never would have been able to directly see the extent of that variation before," LeBeau says.
"Now that we can see these subtle distortions, and know what causes them, the next step is to begin work to understand how these structural differences affect specific properties. Ultimately, we hope to use this knowledge to tailor a material's properties by manipulating these atomic distortions."
####
For more information, please click here
Contacts:
Dr. James LeBeau
919.515.5049
Dr. Doug Irving
919.515.6154
Matt Shipman
919.515.6386
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |