Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unique microscopic images provide new insights into ionic liquids

The researchers use a special sample holder to investigate the ionic liquids under the microscope.
Photo/Copyright: Denis Schimmelpfennig
The researchers use a special sample holder to investigate the ionic liquids under the microscope.

Photo/Copyright: Denis Schimmelpfennig

Abstract:
To directly observe chemical processes in unusual, new materials is a scientific dream, made possible by modern microscopy methods: researchers at Kiel University have, for the first time, captured video images of the attachment of molecules in an ionic liquid onto a submerged electrode. The images from the nanoscale world provide detailed information on the way in which chemical components reorganise when a voltage is applied. New findings based on this information may lead to improved batteries and more energy efficient coating technology or solar engineering.

Unique microscopic images provide new insights into ionic liquids

Kiel, Germany | Posted on April 28th, 2015

Ionic liquids are organic salt melts, which may even be fluid at room temperature, although they contain no water. It is exactly this point that makes them so interesting for numerous experiments and industrial processes. This is because water is electrolytically dissociated at electrodes even at small voltages, which blankets and hinders other, technically important, electrochemical reactions. In addition, the water molecules encase the ions and interfere in numerous chemical processes. In ionic liquids, which consist of ions only, completely new reactions are therefore possible.

Ionic liquids have been a hot field of research in recent years, leading to the discovery of a whole range of new compounds. Their technological applications are manifold: As electrolytes in batteries, fuel cells or dye solar cells and as a galvanic bath for the deposition of thin aluminium coatings or semi-conductor materials. The fact that they operate at room temperature makes them easier to handle for numerous applications and saves energy on top.

However, at present almost no data are available on how electrochemical reactions in ionic liquids operate at the molecular level or how the molecules are arranged on the surface of the electrode. While in aqueous liquids this has been studied for decades by modern microscopy methods, similar studies in ionic liquids have been largely unsuccessful: “The molecules often simply move too fast for conventional instruments”, says Professor Olaf Magnussen of Kiel University. Using a self-built scanning tunnelling microscope his team was now able to track down this mystery.

Video sequences recorded by Magnussen's co-worker Dr Rui Wen reveal how the liquid's molecules, less than a nanometre in size, react when a voltage is applied to a gold electrode. If the surface is uncharged, the molecules display a response typical for liquids: they are disordered and highly mobile. As the voltage increases the molecules lay down flat on the surface and form rows, before they finally reorient to an erect arrangement. At the same time, they become less and less mobile. “The images are unique and help us to develop theories to better describe the electrode processes in ionic liquids”, says physicist Magnussen. “This is important not only for basic research, but also for concrete applications.”

To allow her to research at Kiel University, Rui Wen applied for a scholarship from the Alexander von Humboldt Foundation and the project was successfully approved. “The special microscopy method really attracted me to Kiel”, says Wen. In the two years she has been in Kiel Rui Wen, hailing from China, has investigated a whole range of ionic liquids, among others liquids with BMP ions, the topic of the recently published study. Battery researchers, in particular, are interested in BMP.

The Kiel research results may lead to a better understanding of ionic liquids and allow them to be tailored for more environmentally friendly production processes. For Rui Wen personally, the investigations have already paid off: She recently received an offer to establish her own working group at the Chinese Academy of Sciences in Beijing.

Full bibliographic information
Potential-dependent Adlayer Structure and Dynamics at the Ionic Liquid
/ Au(111) Interface: A Molecular Scale In Situ Video-STM study. Rui Wen, Björn Rahn, and Olaf. M. Magnussen. Angew. Chem. Int, Ed. DOI: 10.1002/anie.201501715

Potentialabhängige Struktur und Dynamik molekularer Adschichten an der Grenzfläche zwischen ionischen Flüssigkeiten und Au(111): Eine in situ Video-STM Studie. Rui Wen, Björn Rahn, and Olaf. M. Magnussen. Angew. Chem. DOI: 10.1002/ange.201501715

####

For more information, please click here

Contacts:
Boris Pawlowski

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video: Microscopic video images of a negatively charged gold electrode in an ionic liquid. The fluctuating square pattern is formed by the liquid's BMP molecules, which attach onto the metallic surface in an ordered arrangement under these conditions.

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project