Home > Press > Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices
![]() |
Image: Jon Wyrick/NIST |
Abstract:
Researchers have succeeded in creating a new "whispering gallery" effect for electrons in a sheet of graphene -- making it possible to precisely control a region that reflects electrons within the material. They say the accomplishment could provide a basic building block for new kinds of electronic lenses, as well as quantum-based devices that combine electronics and optics.
The new system uses a needle-like probe that forms the basis of present-day scanning tunneling microscopes (STM), enabling control of both the location and the size of the reflecting region within graphene -- a two-dimensional form of carbon that is just one atom thick.
The new finding is described in a paper appearing in the journal Science, co-authored by MIT professor of physics Leonid Levitov and researchers at the National Institute of Standards and Technology (NIST), the University of Maryland, Imperial College London, and the National Institute for Materials Science (NIMS) in Tsukuba, Japan.
When the sharp tip of the STM is poised over a sheet of graphene, it produces a circular barrier on the sheet that "acts as a perfect curved mirror" for electrons, Levitov says, reflecting them back toward the center of the circle. This controllable reflectivity is similar, he adds, to so-called "whispering gallery" confinement modes that have been used in optical and acoustic systems -- but these have not been tunable or adjustable.
"In optics, whispering gallery modes are known and useful," Levitov says. "They provide high-quality resonances. But the usual problem in optics is they're not tunable." Similarly, previous attempts to create quantum "corrals" for electrons have used atoms precisely positioned on a surface, which cannot be reconfigured easily.
The confinement in this case is produced by the boundary between two different regions on the graphene surface, corresponding to the "p" and "n" regions in a transistor. In this case, a circular region just beneath the STM tip takes on one polarity, and the surrounding region the opposite polarity, creating a controllable circular junction between the two regions. Electrons inside sheets of graphene behave like particles of light; in this case, the circular junction acts as a curved mirror that can focus and control the electrons.
It's too early to predict what specific uses might be found for this phenomenon, Levitov says, but adds, "Any resonator can be used for a variety of things."
This electron resonator combines several good features. There's clearly something special about having tunability and also high quality at the same time."
Because the new system is based on well-established STM technology, it could be developed relatively quickly into usable devices, Levitov suggests. And conveniently, the STM not only creates the whispering gallery effect, but also provides a means of observing the results, to study the phenomenon. "The tip does double-duty in this case," he says.
This could be a step toward the creation of electronic lenses, Levitov says -- "a concept that intrigues graphene researchers." In principle, these could provide a way of observing objects one-thousandth the size of those visible using light waves.
Electronic lenses would represent a fundamentally different approach from existing electron microscopes, which bombard a surface with high-energy beams of electrons, obliterating any subtle effects within the objects being observed. Electron lenses, by contrast, would be able to observe the ambient low-energy electrons within the object itself.
This could make it possible to study "subtle things about how charge carriers behave at a microscopic level, that you can't see from the outside," Levitov says.
The new work by Levitov and his colleagues provides one piece of such a system -- and potentially of other advanced electro-optical systems, he says, such as negative-refraction materials that have been proposed as a kind of "invisibility cloak." The new whispering-gallery mode for electrons is part of a toolbox that could lead to a whole family of new quantum-based electron-optics devices. It could also be used to create highly sensitive sensors, since such resonators "can be used to enhance your sensitivity to very small signals," Levitov says.
###
The research team also included graduate student Joaquin Rodriguez-Nieva from MIT; Yue Zhao, Jonathan Wyrick, Fabian Natterer, Nikolai Zhitenev, and Joseph Stroscio from NIST; Cyprian Lewandowski from Imperial College London; and Kenji Watanabe and Takashi Taniguchi from NIMS.
####
For more information, please click here
Contacts:
Andrew Carleen
617-253-1682
Copyright © Massachusetts Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Optical computing/Photonic computing
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |