Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Better memory with faster lasers

Using ultrafast 4-D imaging, the new UEC technique allows researchers to "film" the atomic mechanism behind the recording process in memories based on phase change materials.
CREDIT: Jianbo Hu, Giovanni M. Vanacore, and Ahmed H. Zewail
Using ultrafast 4-D imaging, the new UEC technique allows researchers to "film" the atomic mechanism behind the recording process in memories based on phase change materials.

CREDIT: Jianbo Hu, Giovanni M. Vanacore, and Ahmed H. Zewail

Abstract:
DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. Using ultrafast laser pulses that speed up the data recording process, Caltech researchers adopted a novel technique, ultrafast electron crystallography (UEC), to visualize directly in four dimensions the changing atomic configurations of the materials undergoing the phase changes. In doing so, they discovered a previously unknown intermediate atomic state--one that may represent an unavoidable limit to data recording speeds.

Better memory with faster lasers

Pasadena, CA | Posted on July 14th, 2015

By shedding light on the fundamental physical processes involved in data storage, the work may lead to better, faster computer memory systems with larger storage capacity. The research, done in the laboratory of Ahmed Zewail, Linus Pauling Professor of Chemistry and professor of physics, will be published in the July 28 print issue of the journal ACS Nano.

When the laser light interacts with a phase-change material, its atomic structure changes from an ordered crystalline arrangement to a more disordered, or amorphous, configuration. These two states represent 0s and 1s of digital data.

"Today, nanosecond lasers--lasers that pulse light at one-billionth of a second--are used to record information on DVDs and Blu-ray disks, by driving the material from one state to another," explains Giovanni Vanacore, a postdoctoral scholar and an author on the study. The speed with which data can be recorded is determined both by the speed of the laser--that is, by the duration of each "pulse" of light--and by how fast the material itself can shift from one state to the other.

Thus, with a nanosecond laser, "the fastest you can record information is one information unit, one 0 or 1, every nanosecond," says Jianbo Hu, a postdoctoral scholar and the first author of the paper. "To go even faster, people have started to use femtosecond lasers, which can potentially record one unit every one millionth of a billionth of a second. We wanted to know what actually happens to the material at this speed and if there is a limit to how fast you can go from one structural phase to another."

To study this, the researchers used their technique, ultrafast electron crystallography. The technique, a new development--different from Zewail's Nobel Prize-winning work in femtochemistry, the visual study of chemical processes occurring at femtosecond scales--allowed researchers to observe directly the transitioning atomic configuration of a prototypical phase-change material, germanium telluride (GeTe), when it is hit by a femtosecond laser pulse.

In UEC, a sample of crystalline GeTe is bombarded with a femtosecond laser pulse, followed by a pulse of electrons. The laser pulse causes the atomic structure to change from the crystalline to other structures, and then ultimately to the amorphous state. Then, when the electron pulse hits the sample, its electrons scatter in a pattern that provides a picture of the sample's atomic configuration as a function of the time.

With this technique, the researchers could see directly, for the first time, the structural shift in GeTe caused by the laser pulses. However, they also saw something more: a previously unknown intermediate phase that appears during the transition from the crystalline to the amorphous configuration. Because moving through the intermediate phase takes additional time, the researchers believe that it represents a physical limit to how quickly the overall transition can occur--and to how fast data can be recorded, regardless of the laser speeds used.

"Even if there is a laser faster than a femtosecond laser, there will be a limit as to how fast this transition can occur and information can be recorded, just because of the physics of these phase-change materials," Vanacore says. "It's something that cannot be solved technologically--it's fundamental."

Despite revealing such limits, the research could one day aid the development of better data storage for computers, the researchers say. Right now, computers generally store information in several ways, among them the well-known random-access memory (RAM) and read-only memory (ROM). RAM, which is used to run the programs on your computer, can record and rewrite information very quickly via an electrical current. However, the information is lost whenever the computer is powered down. ROM storage, including CDs and DVDs, uses phase-change materials and lasers to store information. Although ROM records and reads data more slowly, the information can be stored for decades.

Finding ways to speed up the recording process of phase-change materials and understanding the limits to this speed could lead to a new type of memory that harnesses the best of both worlds.

The researchers say that their next step will be to use UEC to study the transition of the amorphous atomic structure of GeTe back into the crystalline phase--comparable to the phenomenon that occurs when you erase and then rewrite a DVD.

Although these applications could mean exciting changes for future computer technologies, this work is also very important from a fundamental point of view, Zewail says.

"Understanding the fundamental behavior of materials transformation is what we are after, and these new techniques developed at Caltech have made it possible to visualize such behavior in both space and time," Zewail says.

###

The work is published in a paper titled "Transient Structures and Possible Limits of Data Recording in Phase-Change Materials." In addition to Hu, Vanacore, and Zewail, Xiangshui Miao and Zhe Yang are also coauthors on the paper. The work was supported by the National Science Foundation and the Air Force Office of Scientific Research and was carried out in Caltech's Center for Physical Biology, which is funded by the Gordon and Betty Moore Foundation.

####

For more information, please click here

Contacts:
Deborah Williams-Hedges

626-395-3227

Copyright © California Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project