Home > Press > Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds
Abstract:
Scientists at Freie Universität Berlin in the group of physics professor Jens Eisert developed a novel method for gaining insight into the complex behavior of mechanical systems at the micro and nano scale. These systems are located at the interface of the physical worlds that, on the one hand, are described by classical mechanics, and on the other, by quantum theory, i.e., the theory of the behavior of atoms, molecules, and modes of light. Eisert's group, together with scientists from the University of Vienna in Markus Aspelmeyer's group, succeeded in establishing a new window into this interface. The subtle transition between the classical and the quantum mechanical worlds can be better understood by observing the dynamics of a small mechanical oscillating system. The scientific paper entitled "Observation of non-Markovian micro-mechanical Brownian motion" was published in the prestigious journal Nature Communications.
In the world known from everyday experience, mechanical systems have in principle perfectly known properties. For example, they are obviously always located at some fixed location at a given time. In the world of quantum mechanics, i.e., the world of individual atoms and molecules, objects must by no means be in only one place at a given time. To a certain extent, they can be in several places simultaneously, by being in certain superposition states. Since the 1980s, researchers have been investigating this seemingly paradoxical observation: They are trying to understand the exact transition between the classical world and quantum mechanics. After all, macroscopic mechanical systems also consist of atoms - which means that the laws of physics that apply on a small scale must also apply on the large scale and hence macroscopic objects. That is why it is very amazing that the two physical theories describe nature in such radically different ways.
It is now known that it is again the quantum properties are essentially responsible for the apparently classical behavior of objects in the physical world. However, in a way the interactions between macroscopic systems and their environment are so strong that the subtle quantum properties are less noticeable in the macroscopic system as such. The precise mechanism leading to this decoherence, as it is called, it not in all detail adequately investigated and illustrated until know.
In their research project, the scientists at Freie Universität Berlin and the University of Vienna developed a setting that allows for fresh insights into the interface of the two worlds that describe nature in such different ways. They experimentally observed the light emitted from a cavity one mirror of which constituted a very small mechanical oscillating object. By statistically analyzing this emitted light, they were able to draw profound conclusions about the precise interactions responsible for the emergence of effectively classical properties. The first research results are surprising: The physicists encountered amazing memory effects in the mechanical motion and hence the mirrors can not simply be described as damped mechanical motion, as is usually done. These intricate memory effects lead to highly unorthodox ways of decoherence - yet again leading to classical behavior.
Going a step further, the new knowledge the researchers gained about the dynamics of mechanical systems can be used in the quantum technologies, for example in metrology, which is the science of accurate measurement, here using quantum effects and very small devices. This only works, needless to say, if the dynamics are understood precisely. The findings published in the prestigious journal Nature Communications are a significant contribution in this direction.
The research project was sponsored by several EU programs (RAQUEL, SIQS, AQuS, MNOS, ITNcQOM, IQOEMS, Marie Curie) as well as the European Research Council (TAQ), the German Federal Ministry of Education and Research, the Austrian Science Fund, and the Alexander von Humboldt Foundation.
####
About Freie Universitaet Berlin
Freie Universitaet Berlin is a leading research institution in Germany. It is one of nine German universities that met with success in all three funding lines in the federal and state Excellence Initiative. Freie Universitaet Berlin is a full university with 15 departments and central instituts offering over 100 programs in all subject areas. Students: 34000, Professors (Full-time) and Junior Professors: 462, Graduate Schools: 16.
For more information, please click here
Contacts:
Prof. Dr. Jens Eisert
Department of Physics
Freie Universität Berlin
Tel.: +49 30 838-54781
Caroline Rued-Engel
49 (0)30 838 73195
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||