Home > Press > New record in nanoelectronics at ultralow temperatures
![]() |
Illustration of single-electron tunnelling through an oxide tunnel barrier in the primary thermometer device. The measured tunnel current is used in determining the absolute electron temperature. CREDIT: VTT |
Abstract:
The first ever measurement of the temperature of electrons in a nanoelectronic device a few thousandths of a degree above absolute zero was demonstrated in a joint research project performed by VTT Technical Research Centre of Finland Ltd, Lancaster University, and Aivon Ltd. The team managed to make the electrons in a circuit on a silicon chip colder than had previously been achieved.
Although it has long been possible to cool samples of bulk metals even below 1 millikelvin, it has proved very difficult to transfer this temperature to electrons in small electronic devices, mainly because the interaction between the conducting electrons and the crystal lattice becomes extremely weak at low temperatures. By combining state-of-the-art micro and nanofabrication and pioneering measurement approaches the research team realized ultralow electron temperatures reaching 3.7 millikelvin in a nanoelectronic electron tunnelling device. A scientific article on the subject was published in Nature Communications on Jan. 27, 2016.
This breakthrough paves the way towards sub-millikelvin nanoelectronic circuits and is another step on the way to develop new quantum technologies including quantum computers and sensors. Quantum technologies use quantum mechanical effects to outperform any possible technology based only on classical physics. In general, many high sensitivity magnetic field sensors and radiation detectors require low temperatures simply to reduce detrimental thermal noise.
This work marks the creation of a key enabling technology which will facilitate R&D in nanoscience, solid-state physics, materials science and quantum technologies. The demonstrated nanoelectronic device is a so-called primary thermometer, i.e., a thermometer which requires no calibration. This makes the technology very attractive for low temperature instrumentation applications and metrology.
The breakthrough was made possible by bringing together internationally-leading groups and experts each of whom have their own track record of achievements in the fields of nanotechnologies and high performance sensors (VTT Technical Research Centre of Finland Ltd), custom low-noise electronics (Aivon Ltd, Finland) and ultralow temperature refrigeration and device characterization (Ultra Low Temperature Physics group and Quantum Technology Centre at Lancaster).
VTT is looking into possibilities together with BlueFors Cryogenics to commercialise the primary thermometer component.
Dr Mika Prunnila, Nanoelectronics Research Team Leader at VTT, said: "Creating a new measurement tool for calibration-free thermometry is a big step forward. This is an important device for quantum machines which need the low temperature environment in order to work and the device is available right now for benchmarking different systems."
Dr Rich Haley, Head of Ultra Low Temperature Physics at Lancaster, said: "This is a notable achievement in that the team has finally broken through the 4 millikelvin barrier, which has been the record in such structures for over 15 years."
Dr Jon Prance of the Lancaster Quantum Technology Centre said: "Not only have we measured the coldest ever nanoelectronics temperature, but we have also demonstrated techniques which open the door to even lower temperatures."
####
About VTT Technical Research Centre of Finland Ltd
VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries. We use our research and knowledge to provide expert services for our domestic and international customers and partners, and for both private and public sectors. We use 4,000,000 hours of brainpower a year to develop new technological solutions. VTT in social media: Facebook, LinkedIn and Twitter @VTTFinland.
For more information, please click here
Contacts:
Mika Prunnila
mika.prunnila@vtt.fi
358-040-537-8910
Dr Richard P Haley, Head of Ultra Low Temperature Physics
44-0-1524-593224
r.haley@lancaster.ac.uk
Lancaster University
Further information on VTT:
Olli Ernvall
Senior Vice President, Communications
358-20-722-6747
olli.ernvall@vtt.fi
Copyright © VTT Technical Research Centre of Finland Ltd
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Article: Nature Communications, DOI: 10.1038/NCOMMS10455:
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum Physics
Physics
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |