MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Metal oxide sandwiches: New option to manipulate properties of interfaces

This is a sketch of the structure of both metal oxide layers. Interesting new properties can arise at the interface.

Credit: M. Bibes
This is a sketch of the structure of both metal oxide layers. Interesting new properties can arise at the interface.

Credit: M. Bibes

Abstract:
Sandwich systems of thin film transition metal oxides display surprising properties at their interfaces. In case of the paradigmatic example of Lanthan-Aluminate ( LaAlO3) and Strontium-Titanate (SrTiO3) both materials are insulators and non-magnetic, while their interface has been observed to display ferromagnetism, high electrical conductivity and even superconductivity.

Metal oxide sandwiches: New option to manipulate properties of interfaces

Berlin, Germany | Posted on February 8th, 2016

Now the team of Manuel Bibes, CNRS Thales at Palaiseau, France, in collaboration with scientists at HZB around Sergio Valencia and several European groups, devised a new approach to tailor interface properties. Together they designed a series of experiments at the synchrotron source BESSY II to shed more light on the emergence of such property changes, identifying a new "knob" for their control.

Rare-Earth Elements influence charge transfer

The samples, which the team of Manuel Bibes did produce, consisted of a sandwich of 2 nm Gadolinium-Titanate (GdTiO3) and "R"-Nickelate (RNiO3) films, where R is a rare-earth element. "We have been able to combine two very different transition metal oxides: whereas in the titanate electrons in the chemical bonds are strongly localized around the ions, in the nickelate side these electrons are shared between Nickel- and Oxygen-ions, and thus highly covalent", Manuel Bibes explains. When putting both materials together some charge is transferred from the titanate layer to the nickelate one. They investigated this charge transfer process for samples containing different rare-earth elements in the nickelate layer such as Lanthanum, Neodymium and Samarium at BESSY II.

Their results show that the charge transfer at the interface between the materials strongly depends on the rare earth element in the nickelate layer. Different rare-earth elements have different atomic radii (size).This modifies the interaction between the Ni and O atoms and the degree of "covalency" between Ni and O changes. This was already known, but now the scientists have observed that this also affects the charge transferred from the GdTiO3 to the Nickelate film. "This is the key result", Sergio Valencia from HZB explains. "We have found a new "knob". Covalency (which is controlled by changing R) controls the charge transfer between the titanate and the nickelate."

Ferromagnetism observed, superconductivity still searched

Tuning the charge transfer in this way might allow to control the formation of new interfacial phases too. For example, the scientists observed a new ferromagnetic phase at the interface. "Our work may help in the ongoing quest for cuprate-like superconductivity in nickelate heterostructures", Valencia says. "We hope that this study will help to design better interfaces for exploring new exciting new phases of matter at interfaces between covalent materials", Bibes adds.

####

For more information, please click here

Contacts:
Dr. Sergio Valencia Molina
sergio.valencia@helmholtz-berlin.de
49-308-062-15619

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Published in Nature Physics: doi:10.1038/nphys3627

Related News Press

Superconductivity

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Chip Technology

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Materials/Metamaterials/Magnetoresistance

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project