Home > Press > CCNY researchers introduce new route to thermal measurements with nanometer resolution
Abstract:
Understanding nanoscale heat flow is critical in the design of integrated electronic devices and in the development of materials for thermal insulation and thermoelectric energy recovery. While several techniques are currently available to observe heat transport over macroscopic distances, there is a need for new methods capable of revealing the dynamics of heat flow with nanometer resolution.
A team led by Physics Professors Carlos Meriles of CCNY and Elisa Riedo of the CUNY Advanced Science Research Center's Nanoscience Initiative report on a versatile platform for nanoscale thermal measurements based on a combination of magnetic resonance, and optical and atomic force microscopy, in Nature Communications. Their paper, "Imaging thermal conductivity with nanoscale resolution using a scanning spin probe," is based on a simple notion: that a hot probe in contact with a thermally conductive material, such as a metal, cools down because heat flows from the probe into the material. The latter is prevented, however, if the sample material is thermally insulating, implying that one can infer the sample thermal conductivity by continuously monitoring the probe temperature.
To implement this idea at the nanoscale, the researchers used a thermal atomic force microscope, where the cantilever temperature can be adjusted via the application of an external current. The AFM cantilever hosts a sharp tip that makes contact with the substrate on a small, nanometer-size area. To measure the tip temperature, the CCNY team attached to the tip apex a diamond nanocrystal, whose thermally-dependent fluorescence effectively made it a tiny thermometer. Nanometer-resolved thermal conductivity maps were then obtained as the tip was scanned over various substrates of heterogeneous composition.
The team anticipates multiple applications ranging from fundamental problems of heat flow in nanostructures and radiative heat transport in nano-gaps, to the characterization of materials undergoing heterogeneous phase transitions, to the investigation of catalytic exothermal reactions. Although in the present implementation heat flows from the AFM tip into the sample, the technique can be immediately adapted to probe the local temperature in a hot, non-uniform substrate without the need of a thermal cantilever.
"This form of nanoscale scanning thermometry can play an important role in the characterization of the 'hot spots' formed at the junctions of semiconductor heterostructures, known to be critical in the generation of heat within integrated electronic devices," said Meriles.
####
About City College of New York
Since 1847, The City College of New York has provided low-cost, high-quality education for New Yorkers in a wide variety of disciplines. More than 16,000 students pursue undergraduate and graduate degrees in: the College of Liberal Arts and Sciences; the Bernard and Anne Spitzer School of Architecture; the School of Education; the Grove School of Engineering; the Sophie Davis School of Biomedical Education, and the Colin Powell School for Civic and Global Leadership. U.S. News, Princeton Review and Forbes all rank City College among the best colleges and universities in the United States.
For more information, please click here
Contacts:
Jay Mwamba
212-650-7580
Copyright © City College of New York
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||