Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sweet 'quantum dots' light the way for new HIV and Ebola treatment

Quantum dots are fluorescent crystals in which the color of the emitted light is dependent on the size of the crystal.
CREDIT: Richard E. Cruise, University of Leeds
Quantum dots are fluorescent crystals in which the color of the emitted light is dependent on the size of the crystal.

CREDIT: Richard E. Cruise, University of Leeds

Abstract:
A research team led by the University of Leeds has observed for the first time how HIV and Ebola viruses attach to cells to spread infection.

Sweet 'quantum dots' light the way for new HIV and Ebola treatment

Leeds, UK | Posted on March 15th, 2016

The findings, published today in the journal Angewandte Chemie, offer a new way of treating such viruses: instead of destroying the pathogens, introduce a block on how they interact with cells.

Lead author Dr Yuan Guo, from the Astbury Centre for Structural Molecular Biology at the University of Leeds, said: "Until now, how these viruses attach to cells was a 'black box' to chemists. We knew that the viruses were interacting with healthy cells, but the way in which they bound together was still a mystery."

In the study, the researchers used nano-sized crystals (about a millionth of a millimetre in size) called 'quantum dots' that mimicked the shape of the viruses and acted as technological stand-ins in experiments to reveal how they bind to cells.

Quantum dots are fluorescent crystals in which the colour of the emitted light is dependent on the size of the crystal - one of several properties that has led to them becoming the most desirable component for the latest generation of televisions. They have also emerged as an advanced type of fluorescent probe for biomolecular and cellular imaging, making them useful for studying how viruses spread.

Using the fluorescence of the quantum dots, the research team behind the new study were able to illuminate the physical binds that attach them to the cells, also revealing how the viruses would bond.

In order to allow the quantum dots to bind to cells, they first had to be coated in sugar - a new technique that was developed at the University of Leeds for this study.

Study co-author Dr Bruce Turnbull, also from the Astbury Centre, and the University's School of Chemistry, said: "We often only hear about sugar in a negative light, about how consuming it is bad for our health. But there are many different types of sugars that play a vital role in human biology. In fact, all of our cells are coated in sugar and they interact with other cells by proteins binding with these sugars. Indeed, the reason why we have different blood types is because of the different types of sugar coating on our red blood cells.

"Viruses also attach to the surface of healthy cells through interactions between proteins and sugars. These interactions are weak individually, but can be reinforced by forming multiple contacts to offer the viruses a 'way in'. We want to understand what factors control this binding process and, eventually, develop a range of inhibitors designed to target specific viral bindings."

The study has already revealed the different ways in which two cell surface sugar binding proteins that were previously thought to be almost indistinguishable - called 'DC-SIGN' and 'DC-SIGNR' - bind to the HIV and Ebola virus surface sugars, thereby spreading the viruses.

Study co-lead author Dr Dejian Zhou, also from the Astbury Centre and the University's School of Chemistry, said: "These proteins are like twins with different personalities. Their physical make-up is almost identical, yet the efficiency with which they transmit different viruses, such as HIV and Ebola, varies dramatically and the reason behind this had been a mystery.

"Our study has revealed a way to differentiate between these proteins, as we have found that the way in which they bind to virus surface sugars is very different. They both attach via four binding sites to strengthen the bond, but the orientation of these binding pockets differs."

A pioneering tradition in structural biology

Further progress in this area will be boosted by the state-of-the-art facilities in the Astbury Centre, enabling researchers to better understand life in molecular detail.

The University of Leeds has played a key role in the birth of structural biology as a scientific discipline, with the development of X-ray crystallography by Nobel Laureates William and Lawrence Bragg in Leeds in 1912-13.

A recent £17 million investment in some of the best nuclear magnetic resonance and electron microscopy facilities in the world is now enabling scientists to remain at the forefront of research into complex proteins.

A new academic symposium, the Asbury Conversation, is being hosted at the University of Leeds from 11 - 12 April 2016, to bring together leading researchers from across the globe to discuss the most recent innovations, new techniques and technologies in the field of structural molecular biology.

A public exhibition and lecture on Tuesday 12 April follows the symposium, aimed at helping people understand the secret life of molecules, including an exhibit called "The complex life of sugars". Professor Michael Levitt, who was awarded the 2013 Nobel Prize in Chemistry for developing computer-based tools to better understand and predict chemical reactions, will be delivering the talk, "How modelling molecules builds our understanding of life."

The research was funded by the Wellcome Trust, with additional funding from the Biotechnology and Biological Sciences Research Council (BBSRC).

####

For more information, please click here

Contacts:
Sarah Reed

44-113-343-4196

Copyright © University of Leeds

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research paper, 'Compact, Polyvalent Mannose Quantum Dots as Sensitive, Ratiometric FRET Probes for Multivalent Protein-Ligand Interactions', is published in the journal Angewandte Chemie:

More information about the Astbury Conversation is available at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project