Home > Press > Entanglement becomes easier to measure: New protocol to detect entanglement of many-particle quantum states
Quantum systems consisting of many particles can enter highly intricate states with strong so-called multiparticle entanglement. A new-found theoretical relation now allows extracting it with standard tools available in scattering experiments. CREDIT: IQOQI/Ritsch |
Abstract:
In quantum theory, interactions among particles create fascinating correlations known as entanglement that cannot be explained by any means known to the classical world. Entanglement is a consequence of the probabilistic rules of quantum mechanics and seems to permit a peculiar instantaneous connection between particles over long distances that defies the laws of our macroscopic world - a phenomenon that Einstein referred to as "spooky action at a distance."
Developing protocols to detect and quantify entanglement of many-particle quantum states is a key challenge for current experiments because entanglement becomes very difficult to study when many particles are involved. "We are able to control smaller particle ensembles well, where we can measure entanglement in a relatively straight forward way," says quantum physicist Philipp Hauke. However, "when we are dealing with a large system of entangled particles, this measurement is extremely complex or rather impossible because the resources required scale exponentially with the system size."
Philipp Hauke and Peter Zoller from the Department of Theoretical Physics at the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences in collaboration with Markus Heyl from the Technical University of Munich, and Luca Tagliacozzo from ICFO - The Institute of Photonic Sciences have found a new way to detect certain properties of many-particle entanglement independent of the size of the system and by using standard measurement tools.
Entanglement measurable via susceptibility
"When dealing with more complex systems, scientists had to carry out a large number of measurements to detect and quantify entanglement between many particles," says Philipp Hauke. "Our protocol avoids this problem and can also be used for determining entanglement in macroscopic objects, which was nearly impossible until now."
With this new method theoretical physicists are able to use tools already well established experimentally. In their study, published in Nature Physics, the team of researchers give explicit examples to demonstrate their framework: The entanglement of many-particle systems trapped in optical lattices can be determined by laser spectroscopy, and the well-established technique of neutron scattering may be used for measuring it in solid-state systems. As the physicists have been able to show, the quantum Fisher information, which represents a reliable witness for genuinely multipartite entanglement, is in fact measurable. The researchers have highlighted that entanglement can be detected by measuring the dynamic response of a system caused by a perturbation, which can be determined by comparing individual measurements. "For example, when we move a sample through a time-dependent magnetic field, we can determine the system's susceptibility towards the magnetic field through the measurement data and thereby detect and quantify internal entanglement," explains Hauke.
Manifold applications
Quantum metrology, i.e. measurement techniques with increased precision exploiting quantum mechanics, is not the only important field of application of this protocol. It will also provide new perspectives for quantum simulations, where quantum entanglement is used as a resource for studying properties of quantum systems. In solid-state physics, the protocol may be used to investigate the role of entanglement in many-body systems, thereby providing a deeper understanding of quantum matter.
###
The research work was supported by the Austrian Science Fund and the European Research Council.
####
For more information, please click here
Contacts:
Philipp Hauke
43-512-507-4787
Copyright © University of Innsbruck
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Quantum Physics
Energy transmission in quantum field theory requires information September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||